|
This article is cited in 2 scientific papers (total in 2 papers)
Representation of renormalization group functions by nonsingular
integrals in a model of the critical dynamics of ferromagnets: The fourth
order of the $\varepsilon$-expansion
L. Ts. Adzhemyan, S. E. Vorob'eva, E. V. Ivanova, M. V. Kompaniets St. Petersburg University, St. Petersburg, Russia
Abstract:
Using the representation for renormalization group functions in terms of
nonsingular integrals, we calculate the dynamical critical exponents in the model of critical dynamics of ferromagnets in the fourth order of the $\varepsilon$-expansion. We calculate the Feynman diagrams using the sector
decomposition technique generalized to critical dynamics problems.
Keywords:
renormalization group, $\varepsilon$-expansion, multiloop diagram, critical parameter.
Received: 06.06.2017 Revised: 21.07.2017
Citation:
L. Ts. Adzhemyan, S. E. Vorob'eva, E. V. Ivanova, M. V. Kompaniets, “Representation of renormalization group functions by nonsingular
integrals in a model of the critical dynamics of ferromagnets: The fourth
order of the $\varepsilon$-expansion”, TMF, 195:1 (2018), 105–116; Theoret. and Math. Phys., 195:1 (2018), 584–594
Linking options:
https://www.mathnet.ru/eng/tmf9412https://doi.org/10.4213/tmf9412 https://www.mathnet.ru/eng/tmf/v195/i1/p105
|
Statistics & downloads: |
Abstract page: | 360 | Full-text PDF : | 79 | References: | 46 | First page: | 15 |
|