Abstract:
We consider a simple (1+1)-dimensional model for the Casimir–Polder interaction consisting of two oscillators coupled to a scalar field. We include dissipation in a first-principles approach by allowing the oscillators to interact with heat baths. For this system, we derive an expression for the free energy in terms of real frequencies. From this representation, we derive the Matsubara representation for the case with dissipation. We consider the case of vanishing intrinsic frequencies of the oscillators and show that the contribution from the zeroth Matsubara frequency is modified in this case and no problem with the laws of thermodynamics appears.
Citation:
M. Bordag, “Vacuum and thermal energies for two oscillators interacting through a field”, TMF, 195:3 (2018), 391–421; Theoret. and Math. Phys., 195:3 (2018), 834–860
\Bibitem{Bor18}
\by M.~Bordag
\paper Vacuum and thermal energies for two oscillators interacting through a~field
\jour TMF
\yr 2018
\vol 195
\issue 3
\pages 391--421
\mathnet{http://mi.mathnet.ru/tmf9407}
\crossref{https://doi.org/10.4213/tmf9407}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3808543}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...195..834B}
\elib{https://elibrary.ru/item.asp?id=34940706}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 195
\issue 3
\pages 834--860
\crossref{https://doi.org/10.1134/S0040577918060041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437754600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049560075}
Linking options:
https://www.mathnet.ru/eng/tmf9407
https://doi.org/10.4213/tmf9407
https://www.mathnet.ru/eng/tmf/v195/i3/p391
This publication is cited in the following 3 articles:
H. Bohra, S. Choudhury, P. Chauhan, P. Narayan, S. Panda, A. Swain, “Relating the curvature of de Sitter universe to open quantum Lamb shift spectroscopy”, Eur. Phys. J. C, 81:2 (2021), 196
Yu. S. Barash, “Damped oscillators within the general theory of Casimir and van der Waals forces”, J. Exp. Theor. Phys., 132:4, SI (2021), 663–674
Bordag M., Klimchitskaya G.L., Mostepanenko V.M., “Nonperturbative Theory of Atom-Surface Interaction: Corrections At Short Separations”, J. Phys.-Condes. Matter, 30:5 (2018), 055003