Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 195, Number 1, Pages 81–90
DOI: https://doi.org/10.4213/tmf9371
(Mi tmf9371)
 

This article is cited in 7 scientific papers (total in 7 papers)

Fractional Hamiltonian systems with locally defined potentials

A. B. Benhassine

Department of Mathematics, Higher Institute of Informatics and Mathematics, Monastir, Tunisia
Full-text PDF (446 kB) Citations (7)
References:
Abstract: We study solutions of the nonperiodic fractional Hamiltonian systems
$$ -{}_tD^{\alpha}_{\infty}({}_{-\infty} D_{t}^{\alpha}x(t))-L(t)x(t)+ \nabla W(t,x(t))=0,\quad x\in H^\alpha(\mathbb{R},\mathbb{R}^N), $$
where $\alpha\in(1/2,1]$, $t\in\mathbb R$, $L(t)\in C(\mathbb R,\mathbb R^{N^2})$, and ${}_{-\infty}D^{\alpha}_{t}$ and ${}_tD^{\alpha}_{\infty}$ are the respective left and right Liouville–Weyl fractional derivatives of order $\alpha$ on the whole axis $\mathbb R$. Using a new symmetric mountain pass theorem established by Kajikia, we prove the existence of infinitely many solutions for this system in the case where the matrix $L(t)$ is not necessarily coercive nor uniformly positive definite and $W(t,x)$ is defined only locally near the coordinate origin $x=0$. The proved theorems significantly generalize and improve previously obtained results. We also give several illustrative examples.
Keywords: fractional Hamiltonian system, critical point theory, symmetric mountain pass theorem.
Received: 22.03.2017
Revised: 25.08.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 195, Issue 1, Pages 563–571
DOI: https://doi.org/10.1134/S0040577918040086
Bibliographic databases:
Document Type: Article
MSC: 34C37, 35A15, 37J45
Language: Russian
Citation: A. B. Benhassine, “Fractional Hamiltonian systems with locally defined potentials”, TMF, 195:1 (2018), 81–90; Theoret. and Math. Phys., 195:1 (2018), 563–571
Citation in format AMSBIB
\Bibitem{Ben18}
\by A.~B.~Benhassine
\paper Fractional Hamiltonian systems with locally defined potentials
\jour TMF
\yr 2018
\vol 195
\issue 1
\pages 81--90
\mathnet{http://mi.mathnet.ru/tmf9371}
\crossref{https://doi.org/10.4213/tmf9371}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780089}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...195..563B}
\elib{https://elibrary.ru/item.asp?id=32641437}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 195
\issue 1
\pages 563--571
\crossref{https://doi.org/10.1134/S0040577918040086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000431565600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046550659}
Linking options:
  • https://www.mathnet.ru/eng/tmf9371
  • https://doi.org/10.4213/tmf9371
  • https://www.mathnet.ru/eng/tmf/v195/i1/p81
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:334
    Full-text PDF :70
    References:50
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024