Abstract:
We define a Darboux transformation in terms of a quasideterminant Darboux matrix on the solutions of a semidiscrete short-pulse equation. We also give a quasideterminant formula for $N$-loop soliton solutions and obtain a general expression for the multiloop solution expressed in terms of quasideterminants. Using quasideterminants properties, we find explicit solutions and as an example compute one- and two-loop soliton solutions in explicit form.
Citation:
H. Wajahat A. Riaz, M. Hassan, “Darboux transformation for a semidiscrete short-pulse equation”, TMF, 194:3 (2018), 418–435; Theoret. and Math. Phys., 194:3 (2018), 360–376
This publication is cited in the following 8 articles:
A. Mirza, M. ul Hassan, “Superfield Bäcklund and Darboux transformations of an $\mathcal N=1$ supersymmetric coupled dispersionless integrable system”, Theoret. and Math. Phys., 219:1 (2024), 629–637
A. Inam, M. ul Hassan, “Quasi-Grammian loop dynamics of a multicomponent semidiscrete short pulse equation”, Theoret. and Math. Phys., 220:3 (2024), 1530–1555
A. Inam, M. ul Hassan, “Exact solitons of an $N$-component discrete coupled integrable system”, Theoret. and Math. Phys., 214:1 (2023), 36–71
Ya. Li, J. Li, R. Wang, “N-soliton solutions for the Maxwell-Bloch equations via the Riemann-Hilbert approach”, Mod. Phys. Lett. B, 35:21 (2021), 2150356
Zhaqilao, “A pair of modified short pulse equations and its two-component system in nonlinear media”, Wave Motion, 96 (2020), 102553
H. Riaz, A. Wajahat, M. Hassan, “Quasi-grammian solutions of a multi-component short pulse equation”, J. Geom. Phys., 155 (2020), 103766
H. Wajahat W. A. Riaz, M. Hassan, “Dressing method for the multicomponent short-pulse equation”, Theoret. and Math. Phys., 199:2 (2019), 709–718
M. S. Osman, “One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation”, Nonlinear Dyn., 96:2 (2019), 1491–1496