Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 195, Number 1, Pages 75–80
DOI: https://doi.org/10.4213/tmf9351
(Mi tmf9351)
 

This article is cited in 16 scientific papers (total in 16 papers)

Differences of idempotents in $C^*$-algebras and the quantum Hall effect

A. M. Bikchentaev

Kazan (Volga Region) Federal University, Kazan, Russia
References:
Abstract: Let $\varphi$ be a trace on the unital $C^*$-algebra $\mathcal{A}$ and $\mathfrak{M}_{\varphi}$ be the ideal of the definition of the trace $\varphi$. We obtain a $C^*$ analogue of the quantum Hall effect: if $P,Q\in\mathcal{A}$ are idempotents and $P-Q\in\mathfrak{M}_{\varphi}$, then $\varphi((P-Q)^{2n+1})=\varphi (P-Q)\in \mathbb{R}$ for all $n\in\mathbb{N}$. Let the isometries $U\in\mathcal{A}$ and $A=A^*\in\mathcal{A}$ be such that $I+A$ is invertible and $U-A\in\mathfrak{M}_{\varphi}$ with $\varphi (U-A)\in \mathbb{R}$. Then $I-A,\,I-U \in\mathfrak{M}_{\varphi}$ and $\varphi (I-U)\in \mathbb{R}$. Let $n\in\mathbb{N}$, $\dim \mathcal{H}=2n+1$, the symmetry operators $U,V\in\mathcal{B}(\mathcal{H})$, and $W=U-V$. Then the operator $W$ is not a symmetry, and if $V=V^*$, then the operator $W$ is nonunitary.
Keywords: Hilbert space, linear operator, idempotent, symmetry, projection, unitary operator, trace-class operator, $C^*$-algebra, trace, quantum Hall effect.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02433
Ministry of Education and Science of the Russian Federation 1.1515.2017/4.6
1.9773.2017/8.9
This research is supported by the Russian Foundation for Basic Research, the government of the Republic of Tatarstan (Grant No. 15-41-02433), and subsidies given to Kazan Federal University for performing the governmental target program in the field of science (1.1515.2017/4.6 and 1.9773.2017/8.9).
Received: 09.02.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 195, Issue 1, Pages 557–562
DOI: https://doi.org/10.1134/S0040577918040074
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. M. Bikchentaev, “Differences of idempotents in $C^*$-algebras and the quantum Hall effect”, TMF, 195:1 (2018), 75–80; Theoret. and Math. Phys., 195:1 (2018), 557–562
Citation in format AMSBIB
\Bibitem{Bik18}
\by A.~M.~Bikchentaev
\paper Differences of idempotents in $C^*$-algebras and the~quantum Hall effect
\jour TMF
\yr 2018
\vol 195
\issue 1
\pages 75--80
\mathnet{http://mi.mathnet.ru/tmf9351}
\crossref{https://doi.org/10.4213/tmf9351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780088}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...195..557B}
\elib{https://elibrary.ru/item.asp?id=32641435}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 195
\issue 1
\pages 557--562
\crossref{https://doi.org/10.1134/S0040577918040074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000431565600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046543571}
Linking options:
  • https://www.mathnet.ru/eng/tmf9351
  • https://doi.org/10.4213/tmf9351
  • https://www.mathnet.ru/eng/tmf/v195/i1/p75
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024