Abstract:
We consider the problem of maximizing the transition probability in an $n$-level quantum system from a given initial state to a given final state using nonselective quantum measurements. We find a sequence of measurements that is a critical point of the transition probability and, moreover, a local maximum in each variable on the set of one-dimensional projectors. We consider the class of one-dimensional projectors because these projectors describe the measurements of populations of pure states of the system.
Keywords:
multilevel quantum system, open quantum system, quantum measurement,
quantum system control.
Citation:
N. B. Il'in, A. N. Pechen', “Critical point in the problem of maximizing the transition probability using measurements in an $n$-level quantum system”, TMF, 194:3 (2018), 445–451; Theoret. and Math. Phys., 194:3 (2018), 384–389
\Bibitem{IliPec18}
\by N.~B.~Il'in, A.~N.~Pechen'
\paper Critical point in the~problem of maximizing the~transition probability using measurements in an~$n$-level quantum system
\jour TMF
\yr 2018
\vol 194
\issue 3
\pages 445--451
\mathnet{http://mi.mathnet.ru/tmf9346}
\crossref{https://doi.org/10.4213/tmf9346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3769235}
\elib{https://elibrary.ru/item.asp?id=32641414}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 194
\issue 3
\pages 384--389
\crossref{https://doi.org/10.1134/S0040577918030066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429233100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044921371}
Linking options:
https://www.mathnet.ru/eng/tmf9346
https://doi.org/10.4213/tmf9346
https://www.mathnet.ru/eng/tmf/v194/i3/p445
This publication is cited in the following 3 articles:
D. A. Kronberg, “Modification of quantum measurements by mapping onto quantum states and classical outcomes”, Lobachevskii J. Math., 43:7 (2022), 1663–1668
G. G. Amosov, “On quantum channels generated by covariant positive operator-valued measures on a locally compact group”, Quantum Inf. Process., 21 (2022), 312–10
A. N. Pechen, O. V. Morzhin, “Generation of Density Matrices For Two Qubits Using Coherent and Incoherent Controls”, Lobachevskii J. Math., 42:10, SI (2021), 2401–2412