Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 3, Pages 351–368
DOI: https://doi.org/10.4213/tmf9339
(Mi tmf9339)
 

This article is cited in 2 scientific papers (total in 2 papers)

Generalized Yangians and their Poisson counterparts

D. I. Gurevicha, P. A. Saponovbc

a Laboratoire de Mathématiques et leurs Applications de Valenciennes, Université de Valenciennes, Valenciennes, France
b National Research University "Higher School of Economics", Moscow, Russia
c Institute for High Energy Physics, Protvino, Moskovskaya obl., Russia
Full-text PDF (538 kB) Citations (2)
References:
Abstract: By generalized Yangians, we mean Yangian-like algebras of two different classes. One class comprises the previously introduced so-called braided Yangians. Braided Yangians have properties similar to those of the reflection equation algebra. Generalized Yangians of the second class, $RTT$-type Yangians, are defined by the same formulas as the usual Yangians but with other quantum $R$-matrices. If such an $R$-matrix is the simplest trigonometric $R$-matrix, then the corresponding $RTT$-type Yangian is called a $q$-Yangian. We claim that each generalized Yangian is a deformation of the commutative algebra $\operatorname{Sym}(gl(m)[t^{-1}])$ if the corresponding $R$-matrix is a deformation of the flip operator. We give the explicit form of the corresponding Poisson brackets.
Keywords: current $R$-matrix, braided Yangian, quantum symmetric polynomial, quantum determinant, Poisson structure, deformation property.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
Russian Foundation for Basic Research 16-01-00562
The research of P. A. Saponov was supported by the Russian Academic Excellence Project 5-100 and in part by the Russian Foundation for Basic Research (Grant No. 16-01-00562).
Received: 23.01.2017
Revised: 14.03.2017
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 3, Pages 1243–1257
DOI: https://doi.org/10.1134/S004057791709001X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. I. Gurevich, P. A. Saponov, “Generalized Yangians and their Poisson counterparts”, TMF, 192:3 (2017), 351–368; Theoret. and Math. Phys., 192:3 (2017), 1243–1257
Citation in format AMSBIB
\Bibitem{GurSap17}
\by D.~I.~Gurevich, P.~A.~Saponov
\paper Generalized Yangians and their Poisson counterparts
\jour TMF
\yr 2017
\vol 192
\issue 3
\pages 351--368
\mathnet{http://mi.mathnet.ru/tmf9339}
\crossref{https://doi.org/10.4213/tmf9339}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3693585}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1243G}
\elib{https://elibrary.ru/item.asp?id=29887809}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 3
\pages 1243--1257
\crossref{https://doi.org/10.1134/S004057791709001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412094700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030180227}
Linking options:
  • https://www.mathnet.ru/eng/tmf9339
  • https://doi.org/10.4213/tmf9339
  • https://www.mathnet.ru/eng/tmf/v192/i3/p351
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:462
    Full-text PDF :127
    References:49
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024