Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 193, Number 2, Pages 276–308
DOI: https://doi.org/10.4213/tmf9325
(Mi tmf9325)
 

This article is cited in 18 scientific papers (total in 18 papers)

Vacuum effects for a one-dimensional "hydrogen atom" with Z>Zcr

Yu. S. Voronina, A. S. Davydov, K. A. Sveshnikov

Bogoliubov Institute of Theoretical Problems of the~Microworld, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: For a supercritical Coulomb source with a charge Z>Zcr in 1+1 dimensions, we study the nonperturbative properties of the vacuum density ρVP(x) and the energy EVP. We show that for corresponding problem parameters, nonlinear effects in the supercritical region can lead to behavior of the vacuum energy differing significantly from the perturbative quadratic growth, to the extent of an (almost) quadratic decrease of the form |η|Z2 into the negative region. We also show that although approaches for calculating vacuum expectations values and the behavior of ρVP(x) in the supercritical region for various numbers of spatial dimensions indeed have many common features, EVP for 1+1 dimensions in the supercritical region nevertheless has several specific features determined by the one-dimensionality of the problem.
Keywords: quasi-one-dimensional Dirac–Coulomb system, one-dimensional hydrogen atom, vacuum polarization, nonperturbative effects for Z>Zcr.
Received: 15.12.2016
Revised: 10.05.2017
English version:
Theoretical and Mathematical Physics, 2017, Volume 193, Issue 2, Pages 1647–1674
DOI: https://doi.org/10.1134/S004057791711006X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. S. Voronina, A. S. Davydov, K. A. Sveshnikov, “Vacuum effects for a one-dimensional "hydrogen atom" with Z>Zcr”, TMF, 193:2 (2017), 276–308; Theoret. and Math. Phys., 193:2 (2017), 1647–1674
Citation in format AMSBIB
\Bibitem{VorDavSve17}
\by Yu.~S.~Voronina, A.~S.~Davydov, K.~A.~Sveshnikov
\paper Vacuum effects for a~one-dimensional ``hydrogen atom" with $Z>Z_{\mathrm{cr}}$
\jour TMF
\yr 2017
\vol 193
\issue 2
\pages 276--308
\mathnet{http://mi.mathnet.ru/tmf9325}
\crossref{https://doi.org/10.4213/tmf9325}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...193.1647V}
\elib{https://elibrary.ru/item.asp?id=30512369}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 193
\issue 2
\pages 1647--1674
\crossref{https://doi.org/10.1134/S004057791711006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416925700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037636637}
Linking options:
  • https://www.mathnet.ru/eng/tmf9325
  • https://doi.org/10.4213/tmf9325
  • https://www.mathnet.ru/eng/tmf/v193/i2/p276
  • This publication is cited in the following 18 articles:
    1. P. A. Grashin, K. A. Sveshnikov, “Gerstein–Greiner–Zeldovich Effect: Induced Charge Density and Vacuum Energy”, Phys. Part. Nuclei Lett., 21:2 (2024), 97  crossref
    2. A. Krasnov, K. Sveshnikov, “Non-perturbative effects in the QED-vacuum energy exposed to the supercritical Coulomb field”, Mod. Phys. Lett. A, 37:21 (2022)  crossref  mathscinet
    3. P. Grashin, K. Sveshnikov, “Vacuum polarization energy decline and spontaneous positron emission in QED under Coulomb supercriticality”, Phys. Rev. D, 106:1 (2022)  crossref  mathscinet
    4. A. S. Davydov, A. A. Krasnov, V. A. Kuzmin, “Vacuum charge and current densities in the supercritical two-dimensional Dirac–Coulomb system in a magnetic field with an axial-vector potential”, Theoret. and Math. Phys., 208:1 (2021), 958–976  mathnet  crossref  crossref  adsnasa  isi
    5. Grashin P. Sveshnikov K., “Ferromagnetic Phase in Graphene-Based Planar Heterostructures Induced By Charged Impurity”, Ann. Phys.-Berlin, 532:1 (2020), 1900351, 1900351  crossref  mathscinet  isi  scopus
    6. P. Grashin, K. Sveshnikov, “Magnetic vacuum polarization effects in the supercritical qed: spontaneous generation of the ferromagnetic vacuum state above the “curie point” Z >= Z > z(cr)”, Ann. Phys., 415 (2020), 168094  crossref  mathscinet  isi
    7. K. A. Sveshnikov, Yu. S. Voronina, A. S. Davydov, P. A. Grashin, “Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with Z>Zcr: Vacuum charge density”, Theoret. and Math. Phys., 198:3 (2019), 331–362  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Yu. Voronina, K. Sveshnikov, P. Grashin, A. Davydov, “Essentially non-perturbative and peculiar polarization effects in planar qed with strong coupling”, Physica E, 106 (2019), 298–311  crossref  isi
    9. Yu. Voronina, K. Sveshnikov, P. Grashin, A. Davydov, “Casimir (vacuum) energy in planar qed with strong coupling”, Physica E, 109 (2019), 209–224  crossref  isi
    10. K. A. Sveshnikov, Yu. S. Voronina, A. S. Davydov, P. A. Grashin, “Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system for Z>Zcr: Vacuum polarization effects”, Theoret. and Math. Phys., 199:1 (2019), 533–561  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. Yu. Voronina, I. Komissarov, K. Sveshnikov, “Casimir interactions between two short-range Coulomb sources”, Ann. Phys., 404 (2019), 132–157  crossref  mathscinet  isi  scopus
    12. Yu. Voronina, I. Komissarov, K. Sveshnikov, “Casimir force variability in one-dimensional qed systems”, Phys. Rev. A, 99:6 (2019), 062504  crossref  isi
    13. A. Roenko, K. Sveshnikov, “Estimating the radiative part of qed effects in systems with supercritical charge”, Xxii International Scientific Conference of Young Scientists and Specialists (Ayss-2018), EPJ Web Conf., 201, eds. I. Bobrikov, V. Chudoba, O. Derenovskaya, A. Friesen, A. Verkheev, EDP Sciences, 2019, UNSP 09010  crossref  isi
    14. A. Davydov, K. Sveshnikov, Yu. Voronina, “Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system I. Vacuum charge density”, Int. J. Mod. Phys. A, 33:1 (2018), 1850004  crossref  zmath  isi  scopus
    15. A. Davydov, K. Sveshnikov, Yu. Voronina, “Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system II. Vacuum energy”, Int. J. Mod. Phys. A, 33:1 (2018), 1850005  crossref  zmath  isi  scopus
    16. A. Roenko, K. Sveshnikov, “Estimating the radiative part of QED effects in superheavy nuclear quasimolecules”, Phys. Rev. A, 97:1 (2018), 012113  crossref  isi  scopus
    17. A. A. Roenko, K. A. Sveshnikov, “Dynamical screening of AMM and QED effects for large-Z hydrogen-like atoms”, Phys. Part. Nuclei Lett., 15:1 (2018), 20–28  crossref  isi  scopus
    18. A. A. Roenko, K. A. Sveshnikov, “Interaction of Dirac particle AMM with Coulomb field of a superheavy nucleus: perturbative and nonperturbative aspects”, Phys. Part. Nuclei Lett., 15:1 (2018), 29–42  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:714
    Full-text PDF :180
    References:94
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025