Abstract:
We continue investigations begun in our previous works where we proved that the phase diagram of the Toda system on special linear groups can be identified with the Bruhat order on the symmetric group if all eigenvalues of the Lax matrix are distinct or with the Bruhat order on permutations of a multiset if there are multiple eigenvalues. We show that the phase portrait of the Toda system and the Hasse diagram of the Bruhat order coincide in the case of an arbitrary simple Lie group of rank 22. For this, we verify this property for the two remaining rank-22 groups, Sp(4,R) and the real form of G2.
Keywords:
full symmetric Toda system, Bruhat order, Morse function, semisimple Lie group, Weyl group.
The research of A. S. Sorin was supported in part
by the Russian Foundation for Basic Research (Grant Nos. 16-52-12012-NNIO_a and 15-52-05022-Arm_a) and the DFG (Grant No. LE 838/12-2).
The research of Yu. B. Chernyakov was supported by
the Russian Foundation for Basic Research (Grant No. 15-02-04175).
The research of G. I. Sharygin was supported by a grant from the Russian Science Foundation (Project No. 16-11-10069).
Citation:
A. S. Sorin, Yu. B. Chernyakov, G. I. Sharygin, “Phase portraits of the full symmetric Toda systems on rank-2 groups”, TMF, 193:2 (2017), 193–213; Theoret. and Math. Phys., 193:2 (2017), 1574–1592
\Bibitem{SorCheSha17}
\by A.~S.~Sorin, Yu.~B.~Chernyakov, G.~I.~Sharygin
\paper Phase portraits of the~full symmetric Toda systems on rank-$2$ groups
\jour TMF
\yr 2017
\vol 193
\issue 2
\pages 193--213
\mathnet{http://mi.mathnet.ru/tmf9288}
\crossref{https://doi.org/10.4213/tmf9288}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...193.1574S}
\elib{https://elibrary.ru/item.asp?id=30512364}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 193
\issue 2
\pages 1574--1592
\crossref{https://doi.org/10.1134/S0040577917110022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416925700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037618666}
Linking options:
https://www.mathnet.ru/eng/tmf9288
https://doi.org/10.4213/tmf9288
https://www.mathnet.ru/eng/tmf/v193/i2/p193
This publication is cited in the following 4 articles:
A. S. Sorin, Yu. B. Chernyakov, G. I. Sharygin, “Vector fields and invariants of the full symmetric Toda system”, Theoret. and Math. Phys., 216:2 (2023), 1142–1157
Yuri B. Chernyakov, Georgy I. Sharygin, Alexander S. Sorin, Dmitry V. Talalaev, “The Full Symmetric Toda Flow and Intersections of Bruhat Cells”, SIGMA, 16 (2020), 115, 8 pp.
Yu. Chernyakov, S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Generalized Calogero and Toda models”, JETP Letters, 109:2 (2019), 136–143
Yu. B. Chernyakov, G. I. Sharygin, A. S. Sorin, “Bruhat order in the Toda system on so(2,4): an example of non-split real form”, J. Geom. Phys., 136 (2019), 45–51