|
This article is cited in 3 scientific papers (total in 3 papers)
Quantization of the Kadomtsev–Petviashvili equation
K. K. Kozlowskiabc, E. K. Sklyanind, A. Torriellie a Université de Lyon, Lyon, France
b École Normale Supérieure de Lyon, Lyon, France
c Laboratoire de Physique, Université Claude Bernard Lyon 1, CNRS, Lyon, France
d Department of Mathematics, University of York, York, UK
e Department of Mathematics, University of Surrey, Guildford, UK
Abstract:
We propose a quantization of the Kadomtsev–Petviashvili equation
on a cylinder equivalent to an infinite system of nonrelativistic
one-dimensional bosons with the masses $m=1,2,\dots$.
The Hamiltonian is Galilei-invariant and includes the split and
merge terms $\Psi^{\dagger}_{m_1}\Psi^{\dagger}_{m_2} \Psi_{m_1+m_2}$
and $\Psi^{\dagger}_{m_1+m_2}\Psi_{m_1}\Psi_{m_2}$ for all
combinations of particles with masses $m_1$, $m_2$, and $m_1+m_2$
for a special choice of coupling constants. We construct
the Bethe eigenfunctions for the model and verify the consistency
of the coordinate Bethe ansatz and hence the quantum integrability
of the model up to the mass $M=8$ sector.
Keywords:
Kadomtsev–Petviashvili equation, quantization, Bethe ansatz, integrable model.
Received: 30.08.2016 Revised: 25.09.2016
Citation:
K. K. Kozlowski, E. K. Sklyanin, A. Torrielli, “Quantization of the Kadomtsev–Petviashvili equation”, TMF, 192:2 (2017), 259–283; Theoret. and Math. Phys., 192:2 (2017), 1162–1183
Linking options:
https://www.mathnet.ru/eng/tmf9266https://doi.org/10.4213/tmf9266 https://www.mathnet.ru/eng/tmf/v192/i2/p259
|
Statistics & downloads: |
Abstract page: | 507 | Full-text PDF : | 125 | References: | 63 | First page: | 37 |
|