Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 2, Pages 259–283
DOI: https://doi.org/10.4213/tmf9266
(Mi tmf9266)
 

This article is cited in 4 scientific papers (total in 4 papers)

Quantization of the Kadomtsev–Petviashvili equation

K. K. Kozlowskiabc, E. K. Sklyanind, A. Torriellie

a Université de Lyon, Lyon, France
b École Normale Supérieure de Lyon, Lyon, France
c Laboratoire de Physique, Université Claude Bernard Lyon 1, CNRS, Lyon, France
d Department of Mathematics, University of York, York, UK
e Department of Mathematics, University of Surrey, Guildford, UK
Full-text PDF (626 kB) Citations (4)
References:
Abstract: We propose a quantization of the Kadomtsev–Petviashvili equation on a cylinder equivalent to an infinite system of nonrelativistic one-dimensional bosons with the masses m=1,2,. The Hamiltonian is Galilei-invariant and includes the split and merge terms Ψm1Ψm2Ψm1+m2 and Ψm1+m2Ψm1Ψm2 for all combinations of particles with masses m1, m2, and m1+m2 for a special choice of coupling constants. We construct the Bethe eigenfunctions for the model and verify the consistency of the coordinate Bethe ansatz and hence the quantum integrability of the model up to the mass M=8 sector.
Keywords: Kadomtsev–Petviashvili equation, quantization, Bethe ansatz, integrable model.
Received: 30.08.2016
Revised: 25.09.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 2, Pages 1162–1183
DOI: https://doi.org/10.1134/S0040577917080074
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. K. Kozlowski, E. K. Sklyanin, A. Torrielli, “Quantization of the Kadomtsev–Petviashvili equation”, TMF, 192:2 (2017), 259–283; Theoret. and Math. Phys., 192:2 (2017), 1162–1183
Citation in format AMSBIB
\Bibitem{KozSklTor17}
\by K.~K.~Kozlowski, E.~K.~Sklyanin, A.~Torrielli
\paper Quantization of the~Kadomtsev--Petviashvili equation
\jour TMF
\yr 2017
\vol 192
\issue 2
\pages 259--283
\mathnet{http://mi.mathnet.ru/tmf9266}
\crossref{https://doi.org/10.4213/tmf9266}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3682815}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1162K}
\elib{https://elibrary.ru/item.asp?id=29833740}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 2
\pages 1162--1183
\crossref{https://doi.org/10.1134/S0040577917080074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409295000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85028994930}
Linking options:
  • https://www.mathnet.ru/eng/tmf9266
  • https://doi.org/10.4213/tmf9266
  • https://www.mathnet.ru/eng/tmf/v192/i2/p259
  • This publication is cited in the following 4 articles:
    1. Tomáš Procházka, Springer Proceedings in Mathematics & Statistics, 473, Lie Theory and Its Applications in Physics, 2025, 313  crossref
    2. Tomáš Procházka, Akimi Watanabe, “On Bethe equations of 2d conformal field theory”, J. High Energ. Phys., 2024:9 (2024)  crossref
    3. J. De , B. Doyon, M. Medenjak, M. Panfil, “Correlation functions and transport coefficients in generalised hydrodynamics”, J. Stat. Mech.-Theory Exp., 2022:1 (2022), 014002  crossref  mathscinet  isi
    4. A. Litvinov, I. Vilkoviskiy, “Liouville reflection operator, affine Yangian and Bethe ansatz”, J. High Energy Phys., 2020, no. 12, 100  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:539
    Full-text PDF :141
    References:66
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025