Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 193, Number 1, Pages 41–65
DOI: https://doi.org/10.4213/tmf9256
(Mi tmf9256)
 

Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender–Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations

M. Gianfredaabc, G. Landolfid

a Institute of Industrial Science, University of Tokyo, Tokyo, Japan.
b Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Roma, Italy
c IFAC-CNR, Istituto di Fisica Applicata ``Nello Carrara'', Consiglio Nazionale delle Ricerche, Sesto Fiorentino, Italy
d Dipartimento di Matematica e Fisica "Ennio De Giorgi", Universitá del Salento and I.N.F.N. Sezione di Lecce, Lecce, Italy
References:
Abstract: We solve the problem of integrating operator equations for the dynamics of nonautonomous quantum systems by using time-dependent canonical transformations. The studied operator equations essentially reproduce the classical integrability conditions at the quantum level in the basic cases of one-dimensional nonautonomous dynamical systems. We seek solutions in the form of operator series in the Bender–Dunne basis of pseudodifferential operators. Together with this problem, we consider quantum canonical transformations. The minimal solution of the operator equation in the representation of the basis at a fixed time corresponds to the lowest-order contribution of the solution obtained as a result of applying a canonical linear transformation to the basis elements.
Keywords: Weyl ordering, Bender–Dunne operator basis, operator equation, time-dependent quantum system, quantum canonical transformation.
Funding agency Grant number
Japan Society for the Promotion of Science PE14011
The research of M. Gianfreda is supported by the Japan Society for the Promotion of Science (Fellowship Grant No. PE14011).
Received: 26.07.2016
Revised: 18.11.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 193, Issue 1, Pages 1444–1463
DOI: https://doi.org/10.1134/S004057791710004X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Gianfreda, G. Landolfi, “Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender–Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations”, TMF, 193:1 (2017), 41–65; Theoret. and Math. Phys., 193:1 (2017), 1444–1463
Citation in format AMSBIB
\Bibitem{GiaLan17}
\by M.~Gianfreda, G.~Landolfi
\paper Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the~Bender--Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations
\jour TMF
\yr 2017
\vol 193
\issue 1
\pages 41--65
\mathnet{http://mi.mathnet.ru/tmf9256}
\crossref{https://doi.org/10.4213/tmf9256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3716525}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...193.1444G}
\elib{https://elibrary.ru/item.asp?id=30512353}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 193
\issue 1
\pages 1444--1463
\crossref{https://doi.org/10.1134/S004057791710004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000415198200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85034418701}
Linking options:
  • https://www.mathnet.ru/eng/tmf9256
  • https://doi.org/10.4213/tmf9256
  • https://www.mathnet.ru/eng/tmf/v193/i1/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :114
    References:48
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024