Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 2, Pages 296–311
DOI: https://doi.org/10.4213/tmf9231
(Mi tmf9231)
 

This article is cited in 9 scientific papers (total in 9 papers)

Improved image method for a holographic description of conical defects

I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: The geodesics prescription in the holographic approach in the Lorentzian signature is applicable only for geodesics connecting spacelike-separated points at the boundary because there are no timelike geodesics that reach the boundary. Also, generally speaking, there is no direct analytic Euclidean continuation for a general background, such as a moving particle in the AdS space. We propose an improved geodesic image method for two-point Lorentzian correlators that is applicable for arbitrary time intervals when the space–time is deformed by point particles. We show that such a prescription agrees with the case where the analytic continuation exists and also with the previously used prescription for quasigeodesics. We also discuss some other applications of the improved image method: holographic entanglement entropy and multiple particles in the AdS$_3$ space.
Keywords: AdS/CFT correspondence, holography, geodesic approximation, conical defect.
Funding agency Grant number
Russian Science Foundation 14-11-00687
Section 3 was done by M. A. Khramtsov, and the remaining sections were done by I. Ya. Aref'eva and M. D. Tikhanovskaya. The research of I. Ya. Aref'eva and M. D. Tikhanovskaya was performed at the Steklov Mathematical Institute of Russian Academy of Sciences and supported by a grant from the Russian Science Foundation (Project No. 14-11-00687).
Received: 17.05.2016
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 2, Pages 1660–1672
DOI: https://doi.org/10.1134/S0040577916110106
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, “Improved image method for a holographic description of conical defects”, TMF, 189:2 (2016), 296–311; Theoret. and Math. Phys., 189:2 (2016), 1660–1672
Citation in format AMSBIB
\Bibitem{AreKhrTik16}
\by I.~Ya.~Aref'eva, M.~A.~Khramtsov, M.~D.~Tikhanovskaya
\paper Improved image method for a~holographic description of conical defects
\jour TMF
\yr 2016
\vol 189
\issue 2
\pages 296--311
\mathnet{http://mi.mathnet.ru/tmf9231}
\crossref{https://doi.org/10.4213/tmf9231}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589036}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1660A}
\elib{https://elibrary.ru/item.asp?id=27485059}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 2
\pages 1660--1672
\crossref{https://doi.org/10.1134/S0040577916110106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000389995500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002881421}
Linking options:
  • https://www.mathnet.ru/eng/tmf9231
  • https://doi.org/10.4213/tmf9231
  • https://www.mathnet.ru/eng/tmf/v189/i2/p296
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :134
    References:72
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024