Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 3, Pages 371–379
DOI: https://doi.org/10.4213/tmf9229
(Mi tmf9229)
 

This article is cited in 10 scientific papers (total in 10 papers)

Generation and removal of apparent singularities in linear ordinary differential equations with polynomial coefficients

S. Yu. Slavyanova, D. F. Shat'koa, A. M. Ishkhanyanbc, T. A. Rotinyana

a Saint Petersburg State University, Saint Petersburg, Russia
b Institute of Physics and Technology, Tomsk Polytechnical University, Tomsk. Russia
c Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak-2, Armenia
References:
Abstract: We discuss several examples of generating apparent singular points as a result of differentiating particular homogeneous linear ordinary differential equations with polynomial coefficients and formulate two general conjectures on the generation and removal of apparent singularities in arbitrary Fuchsian differential equations with polynomial coefficients. We consider a model problem in polymer physics.
Keywords: Heun-class equation, Painlevé equation, apparent singular point.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 15T-1C323
Ministry of Education and Science of the Russian Federation FTI_24_2016
The research of A. M. Ishkhanyan was supported by the Armenian State Committee of Science (SCS Grant No. 15T-1C323) and the project “Leading Russian Research Universities” (Grant No. FTI_24_2016 of Tomsk Polytechnic University).
Received: 13.05.2016
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 3, Pages 1726–1733
DOI: https://doi.org/10.1134/S0040577916120059
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Yu. Slavyanov, D. F. Shat'ko, A. M. Ishkhanyan, T. A. Rotinyan, “Generation and removal of apparent singularities in linear ordinary differential equations with polynomial coefficients”, TMF, 189:3 (2016), 371–379; Theoret. and Math. Phys., 189:3 (2016), 1726–1733
Citation in format AMSBIB
\Bibitem{SlaShaIsh16}
\by S.~Yu.~Slavyanov, D.~F.~Shat'ko, A.~M.~Ishkhanyan, T.~A.~Rotinyan
\paper Generation and removal of apparent singularities in linear ordinary differential equations with polynomial coefficients
\jour TMF
\yr 2016
\vol 189
\issue 3
\pages 371--379
\mathnet{http://mi.mathnet.ru/tmf9229}
\crossref{https://doi.org/10.4213/tmf9229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589042}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1726S}
\elib{https://elibrary.ru/item.asp?id=27485067}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 3
\pages 1726--1733
\crossref{https://doi.org/10.1134/S0040577916120059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000392087200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008661171}
Linking options:
  • https://www.mathnet.ru/eng/tmf9229
  • https://doi.org/10.4213/tmf9229
  • https://www.mathnet.ru/eng/tmf/v189/i3/p371
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024