Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1998, Volume 117, Number 1, Pages 130–139
DOI: https://doi.org/10.4213/tmf922
(Mi tmf922)
 

This article is cited in 14 scientific papers (total in 14 papers)

Hamiltonian formalism for particles with a generalized rigidity

A. P. Nersesyan

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
References:
Abstract: The Hamiltonian formalism is developed for mechanical systems described by reparametrization-invariant Lagrangians dependent on the external curvatures of a world line. The complete sets of constraints are constructed for the Lagrangians quadratic in the external curvatures, the Lagrangians proportional to an arbitrary external curvature, and the Lagrangians linear in the first two curvatures.
Received: 28.04.1998
English version:
Theoretical and Mathematical Physics, 1998, Volume 117, Issue 1, Pages 1214–1222
DOI: https://doi.org/10.1007/BF02557162
Bibliographic databases:
Language: Russian
Citation: A. P. Nersesyan, “Hamiltonian formalism for particles with a generalized rigidity”, TMF, 117:1 (1998), 130–139; Theoret. and Math. Phys., 117:1 (1998), 1214–1222
Citation in format AMSBIB
\Bibitem{Ner98}
\by A.~P.~Nersesyan
\paper Hamiltonian formalism for particles with a~generalized rigidity
\jour TMF
\yr 1998
\vol 117
\issue 1
\pages 130--139
\mathnet{http://mi.mathnet.ru/tmf922}
\crossref{https://doi.org/10.4213/tmf922}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1698528}
\zmath{https://zbmath.org/?q=an:1086.37523}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 117
\issue 1
\pages 1214--1222
\crossref{https://doi.org/10.1007/BF02557162}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078621000005}
Linking options:
  • https://www.mathnet.ru/eng/tmf922
  • https://doi.org/10.4213/tmf922
  • https://www.mathnet.ru/eng/tmf/v117/i1/p130
  • This publication is cited in the following 14 articles:
    1. Kaparulin D.S. Lyakhovich S.L., “World Sheets of Spinning Particles”, Phys. Rev. D, 96:10 (2017), 105014  crossref  isi  scopus  scopus  scopus
    2. Pavsic M., “Point Particle With Extrinsic Curvature as a Boundary of a Nambu-Goto String: Classical and Quantum Model”, Adv. Appl. Clifford Algebr., 26:1 (2016), 315–352  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    3. Pavsic M., “A Non-Trivial Zero Length Limit of the Nambu-Goto String”, Phys. Lett. B, 740 (2015), 329–334  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    4. Deriglazov A., Nersessian A., “Rigid Particle Revisited: Extrinsic Curvature Yields the Dirac Equation”, Phys. Lett. A, 378:18-19 (2014), 1224–1227  crossref  zmath  adsnasa  isi  scopus  scopus  scopus
    5. Kozyrev N. Krivonos S. Lechtenfeld O. Nersessian A., “Higher-Derivative N = 4 Superparticle in Three-Dimensional Spacetime”, Phys. Rev. D, 89:4 (2014), 045013  crossref  mathscinet  adsnasa  isi  scopus  scopus  scopus
    6. Bellucci S., Mamasakhlisov Y., Nersessian A., “External Field Influence on Semiflexible Macromolecules: Geometric Coupling”, Modern Phys Lett B, 25:22 (2011), 1809–1819  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    7. Bellucci S., Mamasakhlisov Y., Nersessian A., “Differential Geometry in Dna Molecules”, Nanosci. Nanotechnol. Lett., 3:6 (2011), 922–926  crossref  isi  elib  scopus  scopus  scopus
    8. D. A. Aghamalyan, “Hamiltonian description of systems with Lagrangians depending on extrinsic curvatures on curved spaces”, J. Contemp. Phys., 43:6 (2008), 261  crossref
    9. Segal, AY, “Point particle-symmetric tensors interaction and generalized gauge principle”, International Journal of Modern Physics A, 18:27 (2003), 5021  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    10. Nersessian, A, “D-dimensional massless particle with extended gauge invariance”, Czechoslovak Journal of Physics, 50:11 (2000), 1309  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    11. Nersessian, A, “Large massive 4d article with torsion and conformal mechanics”, Physics Letters B, 473:1–2 (2000), 94  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    12. Zloshchastiev, KG, “Classical and quantum comparison of kink and bell solitons as zero-branes”, Modern Physics Letters A, 15:1 (2000), 67  crossref  mathscinet  adsnasa  isi
    13. Zloshchastiev K.G., “Field-to-particle transition based on the zero-brane approach to quantization of multiscalar field theories and its application for Jackiw-Teitelboim gravity”, Physical Review D, 61:12 (2000), 125017  crossref  adsnasa  isi  scopus  scopus  scopus
    14. Zloshchastiev, KG, “Zero-brane approach to the study of particle-like solitons in classical and quantum Liouville field theory”, Journal of Physics G-Nuclear and Particle Physics, 25:11 (1999), 2177  crossref  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:340
    Full-text PDF :189
    References:85
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025