Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 190, Number 1, Pages 48–57
DOI: https://doi.org/10.4213/tmf9205
(Mi tmf9205)
 

Multidimensional linearizable system of $n$-wave-type equations

A. I. Zenchuk

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region
References:
Abstract: We propose a linearizable version of a multidimensional system of $n$-wave-type nonlinear partial differential equations (PDEs). We derive this system using the spectral representation of its solution via a procedure similar to the dressing method for nonlinear PDEs integrable by the inverse scattering transform method. We show that the proposed system is completely integrable and construct a particular solution.
Keywords: $n$-wave equation, linearizable equation, dressing method, periodic solution.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00389
Ministry of Education and Science of the Russian Federation НШ-9697.2016.2
This research is supported in part by the Russian Foundation for Basic Research (Grant No. 14-01-00389) and the Program for Supporting Leading Scientific Schools (Grant No. NSh-9697.2016.2).
Received: 01.04.2016
Revised: 15.04.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 190, Issue 1, Pages 43–51
DOI: https://doi.org/10.1134/S0040577917010032
Bibliographic databases:
Document Type: Article
PACS: 02.30.Ik,02.30.Jr
MSC: 37K10 , 37K15
Language: Russian
Citation: A. I. Zenchuk, “Multidimensional linearizable system of $n$-wave-type equations”, TMF, 190:1 (2017), 48–57; Theoret. and Math. Phys., 190:1 (2017), 43–51
Citation in format AMSBIB
\Bibitem{Zen17}
\by A.~I.~Zenchuk
\paper Multidimensional linearizable system of $n$-wave-type equations
\jour TMF
\yr 2017
\vol 190
\issue 1
\pages 48--57
\mathnet{http://mi.mathnet.ru/tmf9205}
\crossref{https://doi.org/10.4213/tmf9205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598772}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...190...43Z}
\elib{https://elibrary.ru/item.asp?id=28172169}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 1
\pages 43--51
\crossref{https://doi.org/10.1134/S0040577917010032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394442700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011807026}
Linking options:
  • https://www.mathnet.ru/eng/tmf9205
  • https://doi.org/10.4213/tmf9205
  • https://www.mathnet.ru/eng/tmf/v190/i1/p48
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025