Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 140, Number 2, Pages 310–328
DOI: https://doi.org/10.4213/tmf92
(Mi tmf92)
 

This article is cited in 13 scientific papers (total in 13 papers)

The Physics of Self-Adjoint Extensions: One-Dimensional Scattering Problem for the Coulomb Potential

V. S. Mineev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
References:
Abstract: We consider a one-dimensional single-center scattering problem on the entire axis with the original potential $\alpha|x|^{-1}$. This problem reduces to seeking admissible self-adjoint extensions. Using conservation laws at the singularity point as necessary conditions and taking the analytic structure of fundamental solutions into account allows obtaining exact expressions for the wave functions (i.eḟor the boundary conditions), scattering coefficients, singular corrections to the potential, and also the corresponding spectrum of bound states. It then turns out that pointlike $\delta$-corrections to the potential must necessarily be involved for any choice of the admissible self-adjoint extension. The form of these corrections corresponds to the form of the renormalization terms obtained in quantum electrodynamics. The proposed method therefore indicates a 1:1 relation between boundary conditions, scattering coefficients, and $\delta$-like additions to the potential and demonstrates the general possibilities arising in the analysis of self-adjoint extensions of the corresponding Hamilton operator. In the part pertaining to the renormalization theory, it can be considered a generalization of the renormalization method of Bogoliubov, Parasyuk, and Hepp.
Keywords: Coulomb interaction, point interaction, scattering problem, self-adjoint extensions, renormalizations.
Received: 18.04.2003
Revised: 29.08.2003
English version:
Theoretical and Mathematical Physics, 2004, Volume 140, Issue 2, Pages 1157–1174
DOI: https://doi.org/10.1023/B:TAMP.0000036546.61251.5d
Bibliographic databases:
Language: Russian
Citation: V. S. Mineev, “The Physics of Self-Adjoint Extensions: One-Dimensional Scattering Problem for the Coulomb Potential”, TMF, 140:2 (2004), 310–328; Theoret. and Math. Phys., 140:2 (2004), 1157–1174
Citation in format AMSBIB
\Bibitem{Min04}
\by V.~S.~Mineev
\paper The Physics of Self-Adjoint Extensions: One-Dimensional Scattering Problem for the Coulomb Potential
\jour TMF
\yr 2004
\vol 140
\issue 2
\pages 310--328
\mathnet{http://mi.mathnet.ru/tmf92}
\crossref{https://doi.org/10.4213/tmf92}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101710}
\zmath{https://zbmath.org/?q=an:1178.81273}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...140.1157M}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 140
\issue 2
\pages 1157--1174
\crossref{https://doi.org/10.1023/B:TAMP.0000036546.61251.5d}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223934900010}
Linking options:
  • https://www.mathnet.ru/eng/tmf92
  • https://doi.org/10.4213/tmf92
  • https://www.mathnet.ru/eng/tmf/v140/i2/p310
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:642
    Full-text PDF :281
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024