Abstract:
We analyze the development of the concept of natural geometry for the gravitational field in Logunov's works. We discuss the application of this concept to vacuum nonlinear electrodynamics and show that defining the natural geometry for a nonlinear theory and finding its metric tensor permit obtaining sufficiently complete information about the propagation laws for electromagnetic field pulses in background electromagnetic fields.
Citation:
V. I. Denisov, “Development of the concept of natural geometry for physical interactions”, TMF, 191:2 (2017), 205–211; Theoret. and Math. Phys., 191:2 (2017), 649–654
\Bibitem{Den17}
\by V.~I.~Denisov
\paper Development of the~concept of natural geometry for physical interactions
\jour TMF
\yr 2017
\vol 191
\issue 2
\pages 205--211
\mathnet{http://mi.mathnet.ru/tmf9182}
\crossref{https://doi.org/10.4213/tmf9182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3659587}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...191..649D}
\elib{https://elibrary.ru/item.asp?id=29106648}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 191
\issue 2
\pages 649--654
\crossref{https://doi.org/10.1134/S004057791705004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403012000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020289477}
Linking options:
https://www.mathnet.ru/eng/tmf9182
https://doi.org/10.4213/tmf9182
https://www.mathnet.ru/eng/tmf/v191/i2/p205
This publication is cited in the following 2 articles:
M. E. Abishev, V. I. Denisov, I. P. Denisova, O. V. Kechkin, “The evaluation of electromagnetic forward radiations during the propagation of gravitational waves through the dipole field of the magnetar”, Astropart Phys., 103 (2018), 94–97
Denisov V.I., Sokolov V.A., Svertilov S.I., “Vacuum Nonlinear Electrodynamic Polarization Effects in Hard Emission of Pulsars and Magnetars”, J. Cosmol. Astropart. Phys., 2017, no. 9, 004