Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 190, Number 3, Pages 455–467
DOI: https://doi.org/10.4213/tmf9145
(Mi tmf9145)
 

This article is cited in 6 scientific papers (total in 6 papers)

The property of maximal transcendentality: Calculation of Feynman integrals

A. V. Kotikov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
Full-text PDF (566 kB) Citations (6)
References:
Abstract: We consider examples of two-loop two- and three-point Feynman integrals for which the calculation results have the property of maximal transcendentality.
Keywords: uniqueness method, multiloop calculation, graph, optical conductivity, counterterm.
Funding agency Grant number
Russian Foundation for Basic Research №~16-02-00790_а
This research was supported by the Russian Foundation for Basic Research (Grant No. 16-02-00790_a).
Received: 30.12.2015
Revised: 13.03.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 190, Issue 3, Pages 391–401
DOI: https://doi.org/10.1134/S0040577917030084
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Kotikov, “The property of maximal transcendentality: Calculation of Feynman integrals”, TMF, 190:3 (2017), 455–467; Theoret. and Math. Phys., 190:3 (2017), 391–401
Citation in format AMSBIB
\Bibitem{Kot17}
\by A.~V.~Kotikov
\paper The~property of maximal transcendentality: Calculation of Feynman integrals
\jour TMF
\yr 2017
\vol 190
\issue 3
\pages 455--467
\mathnet{http://mi.mathnet.ru/tmf9145}
\crossref{https://doi.org/10.4213/tmf9145}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3629094}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...190..391K}
\elib{https://elibrary.ru/item.asp?id=28405212}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 3
\pages 391--401
\crossref{https://doi.org/10.1134/S0040577917030084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000399022100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016748906}
Linking options:
  • https://www.mathnet.ru/eng/tmf9145
  • https://doi.org/10.4213/tmf9145
  • https://www.mathnet.ru/eng/tmf/v190/i3/p455
  • This publication is cited in the following 6 articles:
    1. Anatoly V. Kotikov, “Effective Quantum Field Theory Methods for Calculating Feynman Integrals”, Symmetry, 16:1 (2023), 52  crossref
    2. A. V. Kotikov, “Some examples of calculation of massless and massive Feynman integrals”, Particles, 4:3 (2021), 361–380  crossref  isi
    3. Anatoly V. Kotikov, “About Calculation of Massless and Massive Feynman Integrals”, Particles, 3:2 (2020), 394  crossref
    4. A. V. Kotikov, S. Teber, “Multi-loop techniques for massless feynman diagram calculations”, Phys. Part. Nuclei, 50:1 (2019), 1–41  crossref  isi
    5. R. N. Lee, A. I. Onishchenka, “ABJM quantum spectral curve at twist 1: algorithmic perturbative solution”, J. High Energy Phys., 2019, no. 11, 018  crossref  mathscinet  isi
    6. R. N. Lee, A. I. Onishchenko, “ABJM quantum spectral curve and Mellin transform”, J. High Energy Phys., 2018, no. 5, 179  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :138
    References:63
    First page:18
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025