Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 2, Pages 288–317
DOI: https://doi.org/10.4213/tmf9135
(Mi tmf9135)
 

This article is cited in 3 scientific papers (total in 3 papers)

Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers

A. Yu. Anikinabc, S. Yu. Dobrokhotovab, M. I. Katsnel'sonde

a Ishlinsky Institute for Problems in Mechanics, RAS, Moscow, Russia
b Moscow Institute of Physics and Technology, Moscow, Russia
c Bauman Moscow State Technical University, Moscow, Russia
d Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
e Ural Federal University, Yekaterinburg, Russia
Full-text PDF (755 kB) Citations (3)
References:
Abstract: We study the semiclassical asymptotic approximation of the spectrum of the two-dimensional Schrödinger operator with a potential periodic in $x$ and increasing at infinity in $y$. We show that the lower part of the spectrum has a band structure (where bands can overlap) and calculate their widths and dispersion relations between energy and quasimomenta. The key role in the obtained asymptotic approximation is played by librations, i.e., unstable periodic trajectories of the Hamiltonian system with an inverted potential. We also present an effective numerical algorithm for computing the widths of bands and discuss applications to quantum dimers.
Keywords: periodic Schrödinger operator, spectrum, tunneling effect, spectral band, dispersion relation.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00521
15-01-03747
This research was supported in part by the Russian Foundation for Basic Research (Grant Nos. 14-01-00521 and 15-01-03747).
Received: 23.12.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 2, Pages 1210–1235
DOI: https://doi.org/10.1134/S0040577916080067
Bibliographic databases:
PACS: 03.65.Sq
Language: Russian
Citation: A. Yu. Anikin, S. Yu. Dobrokhotov, M. I. Katsnel'son, “Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers”, TMF, 188:2 (2016), 288–317; Theoret. and Math. Phys., 188:2 (2016), 1210–1235
Citation in format AMSBIB
\Bibitem{AniDobKat16}
\by A.~Yu.~Anikin, S.~Yu.~Dobrokhotov, M.~I.~Katsnel'son
\paper Lower part of the~spectrum for the~two-dimensional Schr\"odinger operator periodic in one variable and application to quantum dimers
\jour TMF
\yr 2016
\vol 188
\issue 2
\pages 288--317
\mathnet{http://mi.mathnet.ru/tmf9135}
\crossref{https://doi.org/10.4213/tmf9135}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188.1210A}
\elib{https://elibrary.ru/item.asp?id=26604203}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 2
\pages 1210--1235
\crossref{https://doi.org/10.1134/S0040577916080067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382875800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84986239340}
Linking options:
  • https://www.mathnet.ru/eng/tmf9135
  • https://doi.org/10.4213/tmf9135
  • https://www.mathnet.ru/eng/tmf/v188/i2/p288
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:586
    Full-text PDF :179
    References:81
    First page:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024