Abstract:
We solve the diffraction problem for electromagnetic waves on a planar (2+1)-dimensional layer with a given Chern–Simons action. The Casimir energy of a system of two parallel planar Chern–Simons layers is expressed in terms of the coefficients of reflection from separate layers.
Citation:
V. N. Marachevsky, “Casimir effect for Chern–Simons layers in the vacuum”, TMF, 190:2 (2017), 366–372; Theoret. and Math. Phys., 190:2 (2017), 315–320
This publication is cited in the following 15 articles:
Valery N. Marachevsky, Arseny A. Sidelnikov, “Casimir Interaction of Chern–Simons Layers on Substrates via Vacuum Stress Tensor”, Physics, 6:2 (2024), 496
V. N. Marachevsky, A. A. Sidelnikov, “Vacuum Parity Effects for the Casimir–Polder Potential between
Two Chern–Simons Layers”, Moscow Univ. Phys., 79:S1 (2024), 521
Valery N. Marachevsky, Arseny A. Sidelnikov, “Casimir-Polder interaction with Chern-Simons boundary layers”, Phys. Rev. D, 107:10 (2023)
V. N. Marachevsky, “The Casimir Effect for Diffraction Gratings, Symmetry Breaking, and Geometric Transitions”, Phys. Part. Nuclei Lett., 20:3 (2023), 255
L. M. Woods, M. Krueger, V. V. Dodonov, “Perspective on some recent and future developments in Casimir interactions”, Appl. Sci.-Basel, 11:1 (2021), 293
V. N. Marachevsky, A. A. Sidelnikov, “Green functions scattering in the Casimir effect”, Universe, 7:6 (2021), 195
B.-S. Lu, “The Casimir effect in topological matter”, Universe, 7:7 (2021), 237
V. N. Marachevsky, “Chern-Simons boundary layers in the Casimir effect”, Mod. Phys. Lett. A, 35:3, SI (2020), 2040015
D. Vassilevich, “On the (im)possibility of Casimir repulsion between Chern-Simons surfaces”, Mod. Phys. Lett. A, 35:3, SI (2020), 2040017
V. N. Marachevsky, “Casimir interaction of two dielectric half spaces with Chern-Simons boundary layers”, Phys. Rev. B, 99:7 (2019), 075420
I. Fialkovsky, N. Khusnutdinov, D. Vassilevich, “Quest for Casimir repulsion between Chern–Simons surfaces”, Phys. Rev. B, 97:16 (2018), 165432
S. Rode, R. Bennett, S. Y. Buhmann, “Casimir effect for perfect electromagnetic conductors (PEMCs): a sum rule for attractive/repulsive forces”, New J. Phys., 20 (2018), 043024
S. Y. Buhmann, V. N. Marachevsky, S. Scheel, “Charge-parity-violating effects in Casimir-Polder potentials”, Phys. Rev. A, 98:2 (2018), 022510
Marachevsky V.N., Xxth International Seminar on High Energy Physics (Quarks-2018), Epj Web of Conferences, 191, eds. Volkova V., Zhezher Y., Levkov D., Rubakov V., Matveev V., E D P Sciences, 2018
Fuchs S., Lindel F., Krems R.V., Hanson G.W., Antezza M., Buhmann S.Y., “Casimir-Lifshitz Force For Nonreciprocal Media and Applications to Photonic Topological Insulators”, Phys. Rev. A, 96:6 (2017), 062505