Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 190, Number 2, Pages 325–343
DOI: https://doi.org/10.4213/tmf9120
(Mi tmf9120)
 

This article is cited in 4 scientific papers (total in 4 papers)

The three-dimensional $O(n)$ $\phi^4$ model on a strip with free boundary conditions: Exact results for a nontrivial dimensional crossover in the limit $n\to\infty$

H. W. Diehl, S. B. Rutkevich

Department of Physics, University of Duisburg-Essen, Duisburg, Germany
Full-text PDF (630 kB) Citations (4)
References:
Abstract: We briefly review recent results of exact calculations of critical Casimir forces of the $O(n)$ $\phi^4$ model as $n\to\infty$ on a three-dimensional strip bounded by two planar free surfaces at a distance $L$. This model has long-range order below the critical temperature $T_{\mathrm c}$ of the bulk phase transition only in the limit $L\to\infty$ but remains disordered for all $T>0$ for an arbitrary finite strip width $L<\infty$. A proper description of the system scaling behavior near $T_{\mathrm c}$ turns out to be a quite challenging problem because in addition to bulk, boundary, and finite-size critical behaviors, a nontrivial dimensional crossover must be handled. The model admits an exact solution in the limit $n\to\infty$ in terms of the eigenvalues and eigenenergies of a self-consistent Schrödinger equation. This solution contains a potential $v(z)$ with the near-boundary singular behavior $v(z\to0+)\approx-1/(4z^2)+4m/(\pi^2z)$, where $m=1/\xi_+(|t|)$ is the inverse bulk correlation length and $t\sim(T-T_{\mathrm c})/T_{\mathrm c}$, and a corresponding singularity at the second boundary plane. In recent joint work with colleagues, the potential $v(z)$, the excess free energy, and the Casimir force were obtained numerically with high precision. We explain how these numerical results can be complemented by exact analytic ones for several quantities (series expansion coefficients of $v(z)$, the scattering data of $v(z)$ in the semi-infinite case $L=\infty$ for all $m\gtreqless 0$, and the low-temperature asymptotic behavior of the residual free energy and the Casimir force) by a combination of boundary-operator and short-distance expansions, proper extensions of the inverse scattering theory, new trace formulas, and semiclassical expansions.
Keywords: fluctuation-induced force, Casimir effect, inverse scattering problem, dimensional crossover, finite-size scaling.
Received: 15.12.2015
English version:
Theoretical and Mathematical Physics, 2017, Volume 190, Issue 2, Pages 279–294
DOI: https://doi.org/10.1134/S004057791702009X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: H. W. Diehl, S. B. Rutkevich, “The three-dimensional $O(n)$ $\phi^4$ model on a strip with free boundary conditions: Exact results for a nontrivial dimensional crossover in the limit $n\to\infty$”, TMF, 190:2 (2017), 325–343; Theoret. and Math. Phys., 190:2 (2017), 279–294
Citation in format AMSBIB
\Bibitem{DieRut17}
\by H.~W.~Diehl, S.~B.~Rutkevich
\paper The~three-dimensional $O(n)$ $\phi^4$ model on a~strip with free boundary conditions: Exact results for a~nontrivial dimensional crossover in the~limit $n\to\infty$
\jour TMF
\yr 2017
\vol 190
\issue 2
\pages 325--343
\mathnet{http://mi.mathnet.ru/tmf9120}
\crossref{https://doi.org/10.4213/tmf9120}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3608050}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...190..279D}
\elib{https://elibrary.ru/item.asp?id=28172190}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 2
\pages 279--294
\crossref{https://doi.org/10.1134/S004057791702009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000397031700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015951607}
Linking options:
  • https://www.mathnet.ru/eng/tmf9120
  • https://doi.org/10.4213/tmf9120
  • https://www.mathnet.ru/eng/tmf/v190/i2/p325
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:455
    Full-text PDF :110
    References:59
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024