Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 190, Number 2, Pages 267–276
DOI: https://doi.org/10.4213/tmf9118
(Mi tmf9118)
 

This article is cited in 2 scientific papers (total in 2 papers)

Invariance of the generalized oscillator under a linear transformation of the related system of orthogonal polynomials

V. V. Borzova, E. V. Damaskinskyb

a St. Petersburg State University of Telecommunications, St. Petersburg, Russia
b Military Institute (Engineering-Technical), Military Academy of Materiel and Technical Security, St. Petersburg, Russia
Full-text PDF (437 kB) Citations (2)
References:
Abstract: We consider the families of polynomials P={Pn(x)}n=0 and Q={Qn(x)}n=0 orthogonal on the real line with respect to the respective probability measures μ and ν. We assume that {Qn(x)}n=0 and {Pn(x)}n=0 are connected by linear relations. In the case k=2, we describe all pairs (P,Q) for which the algebras AP and AQ of generalized oscillators generated by {Qn(x)}n=0 and {Pn(x)}n=0 coincide. We construct generalized oscillators corresponding to pairs (P,Q) for arbitrary k1.
Keywords: generalized oscillator, orthogonal polynomial.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03148_а
The research of E. V. Damaskinsky was supported by the Russian Foundation for Basic Research (Grant No. 15-01-03148).
Received: 09.12.2015
Revised: 10.04.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 190, Issue 2, Pages 228–236
DOI: https://doi.org/10.1134/S0040577917020052
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Borzov, E. V. Damaskinsky, “Invariance of the generalized oscillator under a linear transformation of the related system of orthogonal polynomials”, TMF, 190:2 (2017), 267–276; Theoret. and Math. Phys., 190:2 (2017), 228–236
Citation in format AMSBIB
\Bibitem{BorDam17}
\by V.~V.~Borzov, E.~V.~Damaskinsky
\paper Invariance of the~generalized oscillator under a~linear transformation of the~related system of orthogonal polynomials
\jour TMF
\yr 2017
\vol 190
\issue 2
\pages 267--276
\mathnet{http://mi.mathnet.ru/tmf9118}
\crossref{https://doi.org/10.4213/tmf9118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3608046}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...190..228B}
\elib{https://elibrary.ru/item.asp?id=28172186}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 2
\pages 228--236
\crossref{https://doi.org/10.1134/S0040577917020052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000397031700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015836432}
Linking options:
  • https://www.mathnet.ru/eng/tmf9118
  • https://doi.org/10.4213/tmf9118
  • https://www.mathnet.ru/eng/tmf/v190/i2/p267
  • This publication is cited in the following 2 articles:
    1. V. V. Borzov, E. V. Damaskinsky, “Local perturbation of the discrete Schrödinger operator and a generalized Chebyshev oscillator”, Theoret. and Math. Phys., 200:3 (2019), 1348–1359  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. V. V. Borzov, E. V. Damaskinsky, “Generalized Chebychev polynomials connected with a point interaction for the discrete Schrödinger equation”, 2018 Days on Diffraction (DD), eds. O. Motygin, A. Kiselev, L. Goray, A. Kazakov, A. Kirpichnikova, M. Perel, IEEE, 2018, 44–48  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :166
    References:53
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025