Abstract:
We consider the families of polynomials P={Pn(x)}∞n=0 and Q={Qn(x)}∞n=0 orthogonal on the real line with respect to the respective probability measures μ and ν. We assume that {Qn(x)}∞n=0 and {Pn(x)}∞n=0 are connected by linear relations. In the case k=2, we describe all pairs (P,Q) for which the algebras AP and AQ of generalized oscillators generated by {Qn(x)}∞n=0 and {Pn(x)}∞n=0 coincide. We construct generalized oscillators corresponding to pairs (P,Q) for arbitrary k⩾1.
Citation:
V. V. Borzov, E. V. Damaskinsky, “Invariance of the generalized oscillator under a linear transformation of the related system of orthogonal polynomials”, TMF, 190:2 (2017), 267–276; Theoret. and Math. Phys., 190:2 (2017), 228–236
\Bibitem{BorDam17}
\by V.~V.~Borzov, E.~V.~Damaskinsky
\paper Invariance of the~generalized oscillator under a~linear transformation of the~related system of orthogonal polynomials
\jour TMF
\yr 2017
\vol 190
\issue 2
\pages 267--276
\mathnet{http://mi.mathnet.ru/tmf9118}
\crossref{https://doi.org/10.4213/tmf9118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3608046}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...190..228B}
\elib{https://elibrary.ru/item.asp?id=28172186}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 2
\pages 228--236
\crossref{https://doi.org/10.1134/S0040577917020052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000397031700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015836432}
Linking options:
https://www.mathnet.ru/eng/tmf9118
https://doi.org/10.4213/tmf9118
https://www.mathnet.ru/eng/tmf/v190/i2/p267
This publication is cited in the following 2 articles:
V. V. Borzov, E. V. Damaskinsky, “Local perturbation of the discrete Schrödinger operator and a generalized Chebyshev oscillator”, Theoret. and Math. Phys., 200:3 (2019), 1348–1359
V. V. Borzov, E. V. Damaskinsky, “Generalized Chebychev polynomials connected with a point interaction for the discrete Schrödinger equation”, 2018 Days on Diffraction (DD), eds. O. Motygin, A. Kiselev, L. Goray, A. Kazakov, A. Kirpichnikova, M. Perel, IEEE, 2018, 44–48