Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 1, Pages 59–68
DOI: https://doi.org/10.4213/tmf9098
(Mi tmf9098)
 

This article is cited in 4 scientific papers (total in 4 papers)

An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects

P. G. Grinevichabc, P. M. Santinide

a Landau Institute for Theoretical Physics, Chernogolovka, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
d Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
e Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy
Full-text PDF (462 kB) Citations (4)
References:
Abstract: Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in $2{+}1$ dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form $v_t=v_xv_y-\partial^{-1}_x\,\partial_y[v_y+v^2_x]$, where the formal integral $\partial^{-1}_x$ becomes the asymmetric integral $-\int_x^{\infty}dx'$. We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function $f(X,Y)$ over a parabola in the plane $(X,Y)$ can be expressed in terms of the integrals of $f(X,Y)$ over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.
Keywords: dispersionless partial differential equation, scattering transform, Cauchy problem, vector field, Pavlov equation, nonlocality, tomography with an obstacle.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-12469 офи_м2
Ministry of Education and Science of the Russian Federation НШ-4833.2014.1
Russian Academy of Sciences - Federal Agency for Scientific Organizations
Italian Ministry of Education, University and Research JJ4KPA_004
Instituto Nazionale di Fisica Nucleare
The research of P. G. Grinevich was supported in part by the Russian Foundation for Basic Research (Grant No. 13-01-12469 ofi_m2), the Program for Supporting Leading Scientific Schools (Grant No. NSh-4833.2014.1), the program "Fundamental problems of nonlinear dynamics" of the Presidium of the Russian Academy of Sciences, the INFN sezione di Roma, and the program PRIN 2010/11 (Program No. JJ4KPA_004 of Roma 3).
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 1, Pages 1450–1458
DOI: https://doi.org/10.1134/S0040577916100056
Bibliographic databases:
Language: Russian
Citation: P. G. Grinevich, P. M. Santini, “An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects”, TMF, 189:1 (2016), 59–68; Theoret. and Math. Phys., 189:1 (2016), 1450–1458
Citation in format AMSBIB
\Bibitem{GriSan16}
\by P.~G.~Grinevich, P.~M.~Santini
\paper An~integral geometry lemma~and its applications: The~nonlocality of the~Pavlov equation and a~tomographic problem with opaque parabolic objects
\jour TMF
\yr 2016
\vol 189
\issue 1
\pages 59--68
\mathnet{http://mi.mathnet.ru/tmf9098}
\crossref{https://doi.org/10.4213/tmf9098}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1450G}
\elib{https://elibrary.ru/item.asp?id=27350121}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 1
\pages 1450--1458
\crossref{https://doi.org/10.1134/S0040577916100056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386870200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013981703}
Linking options:
  • https://www.mathnet.ru/eng/tmf9098
  • https://doi.org/10.4213/tmf9098
  • https://www.mathnet.ru/eng/tmf/v189/i1/p59
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :114
    References:42
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024