Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 1, Pages 59–68
DOI: https://doi.org/10.4213/tmf9098
(Mi tmf9098)
 

This article is cited in 4 scientific papers (total in 4 papers)

An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects

P. G. Grinevichabc, P. M. Santinide

a Landau Institute for Theoretical Physics, Chernogolovka, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
d Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
e Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy
Full-text PDF (462 kB) Citations (4)
References:
Abstract: Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form vt=vxvy1xy[vy+v2x], where the formal integral 1x becomes the asymmetric integral xdx. We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f(X,Y) over a parabola in the plane (X,Y) can be expressed in terms of the integrals of f(X,Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.
Keywords: dispersionless partial differential equation, scattering transform, Cauchy problem, vector field, Pavlov equation, nonlocality, tomography with an obstacle.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-12469 офи_м2
Ministry of Education and Science of the Russian Federation НШ-4833.2014.1
Russian Academy of Sciences - Federal Agency for Scientific Organizations
Italian Ministry of Education, University and Research JJ4KPA_004
Instituto Nazionale di Fisica Nucleare
The research of P. G. Grinevich was supported in part by the Russian Foundation for Basic Research (Grant No. 13-01-12469 ofi_m2), the Program for Supporting Leading Scientific Schools (Grant No. NSh-4833.2014.1), the program "Fundamental problems of nonlinear dynamics" of the Presidium of the Russian Academy of Sciences, the INFN sezione di Roma, and the program PRIN 2010/11 (Program No. JJ4KPA_004 of Roma 3).
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 1, Pages 1450–1458
DOI: https://doi.org/10.1134/S0040577916100056
Bibliographic databases:
Language: Russian
Citation: P. G. Grinevich, P. M. Santini, “An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects”, TMF, 189:1 (2016), 59–68; Theoret. and Math. Phys., 189:1 (2016), 1450–1458
Citation in format AMSBIB
\Bibitem{GriSan16}
\by P.~G.~Grinevich, P.~M.~Santini
\paper An~integral geometry lemma~and its applications: The~nonlocality of the~Pavlov equation and a~tomographic problem with opaque parabolic objects
\jour TMF
\yr 2016
\vol 189
\issue 1
\pages 59--68
\mathnet{http://mi.mathnet.ru/tmf9098}
\crossref{https://doi.org/10.4213/tmf9098}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1450G}
\elib{https://elibrary.ru/item.asp?id=27350121}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 1
\pages 1450--1458
\crossref{https://doi.org/10.1134/S0040577916100056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386870200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013981703}
Linking options:
  • https://www.mathnet.ru/eng/tmf9098
  • https://doi.org/10.4213/tmf9098
  • https://www.mathnet.ru/eng/tmf/v189/i1/p59
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :136
    References:54
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025