Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 3, Pages 397–415
DOI: https://doi.org/10.4213/tmf9095
(Mi tmf9095)
 

This article is cited in 36 scientific papers (total in 36 papers)

The $N$-wave equations with $\mathcal{PT}$ symmetry

V. S. Gerdjikova, G. G. Grahovskiab, R. I. Ivanovc

a Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
b Department of Mathematical Sciences, University of Essex, Colchester, UK
c School of Mathematical Sciences, Dublin Institute of Technology, Dublin, Ireland
References:
Abstract: We study extensions of $N$-wave systems with $\mathcal{PT}$ symmetry and describe the types of (nonlocal) reductions leading to integrable equations invariant under the $\mathcal P$ (spatial reflection) and $\mathcal T$ (time reversal) symmetries. We derive the corresponding constraints on the fundamental analytic solutions and the scattering data. Based on examples of three-wave and four-wave systems (related to the respective algebras $sl(3,\mathbb C)$) and $so(5,\mathbb C)$), we discuss the properties of different types of one- and two-soliton solutions. We show that the $\mathcal{PT}$-symmetric three-wave equations can have regular multisoliton solutions for some specific choices of their parameters.
Keywords: integrable system, $\mathcal{PT}$ symmetry, inverse scattering transform, soliton solution.
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 3, Pages 1305–1321
DOI: https://doi.org/10.1134/S0040577916090038
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, “The $N$-wave equations with $\mathcal{PT}$ symmetry”, TMF, 188:3 (2016), 397–415; Theoret. and Math. Phys., 188:3 (2016), 1305–1321
Citation in format AMSBIB
\Bibitem{GerGraIva16}
\by V.~S.~Gerdjikov, G.~G.~Grahovski, R.~I.~Ivanov
\paper The~$N$-wave equations with $\mathcal{PT}$ symmetry
\jour TMF
\yr 2016
\vol 188
\issue 3
\pages 397--415
\mathnet{http://mi.mathnet.ru/tmf9095}
\crossref{https://doi.org/10.4213/tmf9095}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188.1305G}
\elib{https://elibrary.ru/item.asp?id=27350083}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 3
\pages 1305--1321
\crossref{https://doi.org/10.1134/S0040577916090038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385628700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84989965652}
Linking options:
  • https://www.mathnet.ru/eng/tmf9095
  • https://doi.org/10.4213/tmf9095
  • https://www.mathnet.ru/eng/tmf/v188/i3/p397
  • This publication is cited in the following 36 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:506
    Full-text PDF :132
    References:79
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024