Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 1, Pages 3–14
DOI: https://doi.org/10.4213/tmf9087
(Mi tmf9087)
 

A bi-Hamiltonian system on the Grassmannian

F. Bonechia, J. Qiub, M. Tarlinia

a National Institute of Nuclear Physics, Sezione di Firenze, Firenze, Italy
b Uppsala University, Department of Mathematics, Uppsala, Sweden
References:
Abstract: Considering the recent result that the Poisson–Nijenhuis geometry corresponds to the quantization of the symplectic groupoid integrating a Poisson manifold, we discuss the Poisson–Nijenhuis structure on the Grassmannian defined by the compatible Kirillov–Kostant–Souriau and Bruhat–Poisson structures. The eigenvalues of the Nijenhuis tensor are Gelfand–Tsetlin variables, which, as was proved, are also in involution with respect to the Bruhat–Poisson structure. Moreover, we show that the Stiefel bundle on the Grassmannian admits a bi-Hamiltonian structure.
Keywords: symplectic geometry, integrable system, Poisson–Nijenhuis geometry, Poisson manifold quantization, symplectic groupoid.
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 1, Pages 1401–1410
DOI: https://doi.org/10.1134/S0040577916100019
Bibliographic databases:
PACS: 02.40.-k
MSC: 53Dxx
Language: Russian
Citation: F. Bonechi, J. Qiu, M. Tarlini, “A bi-Hamiltonian system on the Grassmannian”, TMF, 189:1 (2016), 3–14; Theoret. and Math. Phys., 189:1 (2016), 1401–1410
Citation in format AMSBIB
\Bibitem{BonQiuTar16}
\by F.~Bonechi, J.~Qiu, M.~Tarlini
\paper A~bi-Hamiltonian system on the~Grassmannian
\jour TMF
\yr 2016
\vol 189
\issue 1
\pages 3--14
\mathnet{http://mi.mathnet.ru/tmf9087}
\crossref{https://doi.org/10.4213/tmf9087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589017}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1401B}
\elib{https://elibrary.ru/item.asp?id=27350114}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 1
\pages 1401--1410
\crossref{https://doi.org/10.1134/S0040577916100019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386870200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013875707}
Linking options:
  • https://www.mathnet.ru/eng/tmf9087
  • https://doi.org/10.4213/tmf9087
  • https://www.mathnet.ru/eng/tmf/v189/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :117
    References:63
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024