Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 3, Pages 429–455
DOI: https://doi.org/10.4213/tmf9076
(Mi tmf9076)
 

This article is cited in 15 scientific papers (total in 15 papers)

Confluence of hypergeometric functions and integrable hydrodynamic-type systems

Y. Kodamaa, B. G. Konopelchenkob

a Department of Mathematics, Ohio State University, Columbus, USA
b Dipartimento di Matematica e Fisica "Ennio De Giorgi", Universita del Salento and INFN, Sezione di Lecce, Lecce, Italy
References:
Abstract: We construct a new class of integrable hydrodynamic-type systems governing the dynamics of the critical points of confluent Lauricella-type functions defined on finite-dimensional Grassmannian Gr(2,n), i. e., on the set of 2×n matrices of rank two. These confluent functions satisfy certain degenerate Euler–Poisson–Darboux equations. We show that in the general case, a hydrodynamic-type system associated with the confluent Lauricella function is an integrable and nondiagonalizable quasilinear system of a Jordan matrix form. We consider the cases of the Grassmannians Gr(2,5) for two-component systems and Gr(2,6) for three-component systems in detail.
Keywords: Lauricella function, confluence, integrable system.
Funding agency Grant number
National Science Foundation DMS-1410267
PRIN 2010JJ4KBA_003
The research of Y. Kodama was supported in part by the National Science Foundation (NSF Grant No. DMS-1410267). The research of B. G. Konopelchenko was supported by PRIN 2010/2011 (Grant No. 2010JJ4KBA_003).
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 3, Pages 1334–1357
DOI: https://doi.org/10.1134/S0040577916090051
Bibliographic databases:
PACS: 02.30.Ik
MSC: 14M15
Language: Russian
Citation: Y. Kodama, B. G. Konopelchenko, “Confluence of hypergeometric functions and integrable hydrodynamic-type systems”, TMF, 188:3 (2016), 429–455; Theoret. and Math. Phys., 188:3 (2016), 1334–1357
Citation in format AMSBIB
\Bibitem{KodKon16}
\by Y.~Kodama, B.~G.~Konopelchenko
\paper Confluence of hypergeometric functions and integrable hydrodynamic-type systems
\jour TMF
\yr 2016
\vol 188
\issue 3
\pages 429--455
\mathnet{http://mi.mathnet.ru/tmf9076}
\crossref{https://doi.org/10.4213/tmf9076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188.1334K}
\elib{https://elibrary.ru/item.asp?id=27350089}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 3
\pages 1334--1357
\crossref{https://doi.org/10.1134/S0040577916090051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385628700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84989861977}
Linking options:
  • https://www.mathnet.ru/eng/tmf9076
  • https://doi.org/10.4213/tmf9076
  • https://www.mathnet.ru/eng/tmf/v188/i3/p429
  • This publication is cited in the following 15 articles:
    1. Pierandrea Vergallo, Evgeny V. Ferapontov, “Hamiltonian Aspects of the Kinetic Equation for Soliton Gas”, J Nonlinear Sci, 35:1 (2025)  crossref
    2. Paolo Lorenzoni, Sara Perletti, Karoline van Gemst, “Integrable Hierarchies and F-Manifolds with Compatible Connection”, Commun. Math. Phys., 406:4 (2025)  crossref
    3. Paolo Lorenzoni, Sara Perletti, “Integrable hierarchies, Frölicher–Nijenhuis bicomplexes and Lauricella bi-flat F-manifolds”, Nonlinearity, 36:12 (2023), 6925  crossref
    4. P. Vergallo, E. V. Ferapontov, “Hamiltonian systems of Jordan block type: Delta-functional reductions of the kinetic equation for soliton gas”, Journal of Mathematical Physics, 64:10 (2023)  crossref
    5. Ferapontov V E., Pavlov V M., “Kinetic Equation For Soliton Gas: Integrable Reductions”, J. Nonlinear Sci., 32:2 (2022), 26  crossref  mathscinet  isi
    6. B.G. Konopelchenko, “Multi-dimensional Jordan chain and Navier-Stokes equation”, Physics Letters A, 441 (2022), 128167  crossref
    7. B. G. Konopelchenko, G. Ortenzi, “On universality of homogeneous Euler equation”, J. Phys. A-Math. Theor., 54:20 (2021), 205701  crossref  mathscinet  isi
    8. M. V. Pavlov, P. Vergallo, R. Vitolo, “Classification of bi-Hamiltonian pairs extended by isometries”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 477:2251 (2021), 20210185  crossref  mathscinet  isi
    9. B. G. Konopelchenko, G. Ortenzi, “On the plane into plane mappings of hydrodynamic type. Parabolic case”, Rev. Math. Phys., 32:3 (2020), 2050006  crossref  mathscinet  isi
    10. L. Xue, E. V. Ferapontov, “Quasilinear systems of Jordan block type and the mKP hierarchy”, J. Phys. A-Math. Theor., 53:20 (2020), 205202  crossref  mathscinet  isi
    11. B. G. Konopelchenko, G. Ortenzi, “Parabolic regularization of the gradient catastrophes for the Burgers-Hopf equation and Jordan chain”, J. Phys. A-Math. Theor., 51:27 (2018), 275201, 26 pp.  crossref  mathscinet  isi  scopus
    12. M. V. Feigin, A. P. Veselov, “-systems, holonomy Lie algebras, and logarithmic vector fields”, Int. Math. Res. Notices, 2018, no. 7, 2070–2098  crossref  mathscinet  isi  scopus
    13. Maxim V. Pavlov, “Integrability of exceptional hydrodynamic-type systems”, Proc. Steklov Inst. Math., 302 (2018), 325–335  mathnet  crossref  crossref  isi  elib
    14. M. V. Pavlov, N. M. Stoilov, “Three dimensional reductions of four-dimensional quasilinear systems”, J. Math. Phys., 58:11 (2017), 111510  crossref  mathscinet  zmath  isi  scopus
    15. B. G. Konopelchenko, G. Ortenzi, “Jordan form, parabolicity and other features of change of type transition for hydrodynamic type systems”, J. Phys. A-Math. Theor., 50:21 (2017), 215205  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:533
    Full-text PDF :162
    References:73
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025