Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 3, Pages 470–476
DOI: https://doi.org/10.4213/tmf9075
(Mi tmf9075)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Burgers equation with periodic boundary conditions on an interval

A. V. Samokhin

Moscow State Technical University of Civil Aviation, Moscow, Russia
Full-text PDF (451 kB) Citations (2)
References:
Abstract: We study the asymptotic profile of the solutions of the Burgers equation on a finite interval with a periodic perturbation on the boundary. The equation describes a dissipative medium, and the initial constant profile therefore passes into a wave with a decreasing amplitude. In the low-viscosity case, the asymptotic profile looks like a sawtooth wave (with periodic breaks of the derivative), similar to the known Fay solution on the half-line, but it has some new properties.
Keywords: sawtooth wave, invariant solution, initial–boundary value problem, asymptotic behavior.
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 3, Pages 1371–1376
DOI: https://doi.org/10.1134/S0040577916090087
Bibliographic databases:
PACS: 43.25.+y
MSC: 35Q35, 35Q53
Language: Russian
Citation: A. V. Samokhin, “The Burgers equation with periodic boundary conditions on an interval”, TMF, 188:3 (2016), 470–476; Theoret. and Math. Phys., 188:3 (2016), 1371–1376
Citation in format AMSBIB
\Bibitem{Sam16}
\by A.~V.~Samokhin
\paper The~Burgers equation with periodic boundary conditions on an~interval
\jour TMF
\yr 2016
\vol 188
\issue 3
\pages 470--476
\mathnet{http://mi.mathnet.ru/tmf9075}
\crossref{https://doi.org/10.4213/tmf9075}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188.1371S}
\elib{https://elibrary.ru/item.asp?id=27350100}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 3
\pages 1371--1376
\crossref{https://doi.org/10.1134/S0040577916090087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385628700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84989890063}
Linking options:
  • https://www.mathnet.ru/eng/tmf9075
  • https://doi.org/10.4213/tmf9075
  • https://www.mathnet.ru/eng/tmf/v188/i3/p470
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :213
    References:54
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024