Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 187, Number 2, Pages 263–282
DOI: https://doi.org/10.4213/tmf9068
(Mi tmf9068)
 

This article is cited in 4 scientific papers (total in 4 papers)

$SU(2)/SL(2)$ knot invariants and Kontsevich–Soibelman monodromies

D. M. Galakhovab, A. D. Mironovcdea, A. Yu. Morozovdea

a New High Energy Theory Center, Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ, USA
b Institute for Information Transmission Problems, Moscow, Russia
c Lebedev Physical Institute, RAS, Moscow, Russia
d Institute for Theoretical and Experiment Physics, Moscow, Russia
e National Research Nuclear University MEPhI, Moscow, Russia
Full-text PDF (933 kB) Citations (4)
References:
Abstract: We review the Reshetikhin–Turaev approach for constructing noncompact knot invariants involving $R$-matrices associated with infinite-dimensional representations, primarily those constructed from the Faddeev quantum dilogarithm. The corresponding formulas can be obtained from modular transformations of conformal blocks as their Kontsevich–Soibelman monodromies and are presented in the form of transcendental integrals, where the main issue is working with the integration contours. We discuss possibilities for extracting more explicit and convenient expressions that can be compared with the ordinary (compact) knot polynomials coming from finite-dimensional representations of simple Lie algebras, with their limits and properties. In particular, the quantum A-polynomials and difference equations for colored Jones polynomials are the same as in the compact case, but the equations in the noncompact case are homogeneous and have a nontrivial right-hand side for ordinary Jones polynomials.
Keywords: Chern–Simons theory, Kontsevich–Soibelman monodromy, Wilson average, $R$-matrix, modular double, quantum A-polynomial.
Funding agency Grant number
Russian Science Foundation 14-50-00150
This research was performed at the Institute for Information Transmission Problems and was funded by a grant from the Russian Science Foundation (Grant No. 14-50-00150).
Received: 19.10.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 187, Issue 2, Pages 678–694
DOI: https://doi.org/10.1134/S0040577916050056
Bibliographic databases:
PACS: 11.15.Yc, 02.10.Kn, 02.20.Uw
Language: Russian
Citation: D. M. Galakhov, A. D. Mironov, A. Yu. Morozov, “$SU(2)/SL(2)$ knot invariants and Kontsevich–Soibelman monodromies”, TMF, 187:2 (2016), 263–282; Theoret. and Math. Phys., 187:2 (2016), 678–694
Citation in format AMSBIB
\Bibitem{GalMirMor16}
\by D.~M.~Galakhov, A.~D.~Mironov, A.~Yu.~Morozov
\paper $SU(2)/SL(2)$ knot invariants and Kontsevich--Soibelman monodromies
\jour TMF
\yr 2016
\vol 187
\issue 2
\pages 263--282
\mathnet{http://mi.mathnet.ru/tmf9068}
\crossref{https://doi.org/10.4213/tmf9068}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507536}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..678G}
\elib{https://elibrary.ru/item.asp?id=26414425}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 2
\pages 678--694
\crossref{https://doi.org/10.1134/S0040577916050056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377250400004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84973482168}
Linking options:
  • https://www.mathnet.ru/eng/tmf9068
  • https://doi.org/10.4213/tmf9068
  • https://www.mathnet.ru/eng/tmf/v187/i2/p263
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:522
    Full-text PDF :195
    References:91
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024