Abstract:
We show that the current interaction of massless fields in four dimensions breaks the sp(8) symmetry of free massless equations of arbitrary spin down to the conformal symmetry su(2,2). This breaking agrees with the form of the nonlinear higher-spin field equations.
Citation:
O. A. Gelfond, M. A. Vasiliev, “Symmetries of higher-spin current interactions in four dimensions”, TMF, 187:3 (2016), 401–420; Theoret. and Math. Phys., 187:3 (2016), 797–812
\Bibitem{GelVas16}
\by O.~A.~Gelfond, M.~A.~Vasiliev
\paper Symmetries of higher-spin current interactions in four dimensions
\jour TMF
\yr 2016
\vol 187
\issue 3
\pages 401--420
\mathnet{http://mi.mathnet.ru/tmf9064}
\crossref{https://doi.org/10.4213/tmf9064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535386}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..797G}
\elib{https://elibrary.ru/item.asp?id=26414436}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 3
\pages 797--812
\crossref{https://doi.org/10.1134/S0040577916060015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000379309300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977074165}
Linking options:
https://www.mathnet.ru/eng/tmf9064
https://doi.org/10.4213/tmf9064
https://www.mathnet.ru/eng/tmf/v187/i3/p401
This publication is cited in the following 10 articles:
Didenko V.E., Korybut V A., “Planar Solutions of Higher-Spin Theory. Nonlinear Corrections”, J. High Energy Phys., 2022, no. 1, 125
N. G. Misuna, “On unfolded off-shell formulation for higher-spin theory”, Phys. Lett. B, 798 (2019), UNSP 134956
M. A. Vasiliev, “On the local frame in nonlinear higher-spine quations”, J. High Energy Phys., 2018, no. 1, 062, front matter + 25 pp.
N. G. Misuna, “On current contribution to Fronsdal equations”, Phys. Lett. B, 778 (2018), 71–78
O. A. Gelfon, M. A. Vasiliev, “Current interactions from the one-form sector of nonlinear higher-spin equations”, Nucl. Phys. B, 931 (2018), 383–417
D. Sorokin, M. Tsulaia, “Higher spin fields in hyperspace: a review”, Universe, 4:1 (2018), 7
M. Henneaux, V. Lekeu, A. Leonard, J. Matulich, S. Prohazka, “Three-dimensional conformal geometry and prepotentials for four-dimensional fermionic higher-spin fields”, J. High Energy Phys., 2018, no. 11, 156
M. A. Vasiliev, “Current interactions and holography from the 0-form sector of nonlinear higher-spin equations”, J. High Energy Phys., 2017, no. 10, 111
M. Henneaux, S. Hörtner, A. Leonard, “Twisted self-duality for higher spin gauge fields and prepotentials”, Phys. Rev. D, 94:10 (2016), 105027, 14 pp.
E. Skvortsov, D. Sorokin, M. Tsulaia, “Correlation functions of Sp(2n) invariant higher-spin systems”, J. High Energy Phys., 2016, no. 7, 128, front matter+23 pp.