Abstract:
We study the chaos control and the function projective synchronization of a fractional-order T-system and Lorenz chaotic system using the backstepping method. Based on stability theory, we consider the condition for the local stability of nonlinear three-dimensional commensurate fractional-order system. Using the feedback control method, we control the chaos in the considered fractional-order T-system. We simulate the function projective synchronization between the fractional-order T-system and Lorenz system numerically using MATLAB and depict the results with plots.
Citation:
S. Das, V. K. Yadav, “Chaos control and function projective synchronization of fractional-order systems through the backstepping method”, TMF, 189:1 (2016), 36–47; Theoret. and Math. Phys., 189:1 (2016), 1430–1439
\Bibitem{DasYad16}
\by S.~Das, V.~K.~Yadav
\paper Chaos control and function projective synchronization of fractional-order systems through the~backstepping method
\jour TMF
\yr 2016
\vol 189
\issue 1
\pages 36--47
\mathnet{http://mi.mathnet.ru/tmf9046}
\crossref{https://doi.org/10.4213/tmf9046}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589019}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1430D}
\elib{https://elibrary.ru/item.asp?id=27350117}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 1
\pages 1430--1439
\crossref{https://doi.org/10.1134/S0040577916100032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386870200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013885082}
Linking options:
https://www.mathnet.ru/eng/tmf9046
https://doi.org/10.4213/tmf9046
https://www.mathnet.ru/eng/tmf/v189/i1/p36
This publication is cited in the following 18 articles:
Xianghong He, Heyuan Wang, Weipeng Sun, Tianxiong Lu, 2024 9th International Conference on Electronic Technology and Information Science (ICETIS), 2024, 268
Alison Garza-Alonso, Michael Basin, Pablo Rodriguez-Ramirez, “Predefined-time synchronization of competitive neural networks with deterministic disturbances and stochastic noises”, Transactions of the Institute of Measurement and Control, 45:12 (2023), 2299
Le Zhao, Guanci Yang, Yang Li, Xuechun Hu, “Fuzzy adaptive optimal backstepping control of the FO MEMS resonator under imprecise target trajectory with disturbance compensation mechanism”, Nonlinear Dyn, 111:19 (2023), 17939
Hanlin Dong, Jinde Cao, Heng Liu, “Observers-based event-triggered adaptive fuzzy backstepping synchronization of uncertain fractional order chaotic systems”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 33:4 (2023)
Balakrishnan Sriram, Victor Kamdoum Tamba, Eric Donald Dongmo, André Chéagé Chamgoué, Karthikeyan Rajagopal, “Autonomous Jerk Oscillator with Quadratic Nonlinearities: Theoretical Investigations, Chaos Control, and Difference Synchronization”, Iran J Sci, 47:4 (2023), 1313
Lixiong Lin, “Projective synchronization of two coupled Lorenz chaotic systems in predefined time”, Int. J. Dynam. Control, 10:3 (2022), 879
Lixiong Lin, Yufu Zhuang, Xiafu Peng, 2022 41st Chinese Control Conference (CCC), 2022, 686
Alison Garza-Alonso, Michael Basin, Pablo Rodriguez-Ramirez, 2022 16th International Workshop on Variable Structure Systems (VSS), 2022, 219
Anmol Assal, Jay Prakash Singh, Binoy Krishna Roy, “Comparatively better and effective adaptive controllers for synchronisation between identical hyperchaotic systems”, IFAC-PapersOnLine, 55:1 (2022), 64
Shaohua Luo, Guanci Yang, Junyang Li, Hassen M. Ouakad, “Dynamic analysis, circuit realization and accelerated adaptive backstepping control of the FO MEMS gyroscope”, Chaos, Solitons & Fractals, 155 (2022), 111735
Sh. Luo, J. Li, Sh. Li, J. Hu, “Dynamical analysis of the fractional-order centrifugal flywheel governor system and its accelerated adaptive stabilization with the optimality”, Int. J. Electr. Power Energy Syst., 118 (2020), 105792
Luo Sh., Li Sh., Yang G., Ouakad H.M., Karami F., “Dynamical Analysis and Anti-Oscillation-Based Adaptive Control of the Fo Arch Mems With Optimality”, Nonlinear Dyn., 101:1 (2020), 293–309
L. Lin, “Predefined-time antisynchronization of two different chaotic neural networks”, Complexity, 2020 (2020), 7476250
V. K. Yadav, V. K. Shukla, S. Das, “Difference synchronization among three chaotic systems with exponential term and its chaos control”, Chaos Solitons Fractals, 124 (2019), 36–51
V. K. Yadav, V. K. Shukla, S. Das, A. Y. T. Leung, M. Srivastava, “Function projective synchronization of fractional order satellite system and its stability analysis for incommensurate case”, Chin. J. Phys., 56:2 (2018), 696–707
Sh. Luo, Sh. Li, F. Tajaddodianfar, J. Hu, “Anti-oscillation and chaos control of the fractional-order brushless DC motor system via adaptive echo state networks”, J. Frankl. Inst.-Eng. Appl. Math., 355:14 (2018), 6435–6453
S. Ahadpour, A. Nemati, F. Mirmasoudi, N. Hematpour, “Projective synchronization of piecewise nonlinear chaotic maps”, Theoret. and Math. Phys., 197:3 (2018), 1856–1864
Sh. Gao, Yu. Wang, H. Dong, B. Ning, H. Wang, “Controlling uncertain Genesio-Tesi chaotic system using adaptive dynamic surface and nonlinear feedback”, Chaos Solitons Fractals, 105 (2017), 180–188