Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 3, Pages 497–504
DOI: https://doi.org/10.4213/tmf9045
(Mi tmf9045)
 

Exact solutions for equilibrium configurations of the surface of a conducting fluid in a nonuniform magnetic field

N. M. Zubarevab, O. V. Zubarevab

a Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
b Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
References:
Abstract: We study the two-dimensional magnetic shaping problem for the situation where the free surface of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. We obtain exact solutions of the problem using conformal map techniques. These solutions describe a system of two-dimensional dimples that appear on the initially flat surface of a liquid conductor under the action of a nonuniform magnetic field. We consider the case of two symmetrically located dimples in detail.
Keywords: equilibrium configuration, exact solution, free surface, conducting fluid, surface tension, nonuniform magnetic field, conformal map method.
Funding agency Grant number
Russian Foundation for Basic Research 14-08-00235
16-08-00228
Ural Branch of the Russian Academy of Sciences 15-8-2-8
This research was performed in the framework of a Government Program (Project No. 0389-2014-0006) and supported by the Russian Foundation for Basic Research (Grant Nos. 14-08-00235 and 16-08-00228) and the Presidium of the Ural Branch of the Russian Academy of Sciences (Project No. 15-8-2-8).
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 3, Pages 1394–1400
DOI: https://doi.org/10.1134/S0040577916090105
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. M. Zubarev, O. V. Zubareva, “Exact solutions for equilibrium configurations of the surface of a conducting fluid in a nonuniform magnetic field”, TMF, 188:3 (2016), 497–504; Theoret. and Math. Phys., 188:3 (2016), 1394–1400
Citation in format AMSBIB
\Bibitem{ZubZub16}
\by N.~M.~Zubarev, O.~V.~Zubareva
\paper Exact solutions for equilibrium configurations of the~surface of a~conducting fluid in a~nonuniform magnetic field
\jour TMF
\yr 2016
\vol 188
\issue 3
\pages 497--504
\mathnet{http://mi.mathnet.ru/tmf9045}
\crossref{https://doi.org/10.4213/tmf9045}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188.1394Z}
\elib{https://elibrary.ru/item.asp?id=27350109}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 3
\pages 1394--1400
\crossref{https://doi.org/10.1134/S0040577916090105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385628700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84989876731}
Linking options:
  • https://www.mathnet.ru/eng/tmf9045
  • https://doi.org/10.4213/tmf9045
  • https://www.mathnet.ru/eng/tmf/v188/i3/p497
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :116
    References:47
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024