Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 1, Pages 84–100
DOI: https://doi.org/10.4213/tmf9037
(Mi tmf9037)
 

This article is cited in 4 scientific papers (total in 4 papers)

Combinatorial Yang–Baxter maps arising from the tetrahedron equation

A. Kuniba

University of Tokyo, Tokyo, Japan
Full-text PDF (620 kB) Citations (4)
References:
Abstract: We survey the matrix product solutions of the Yang–Baxter equation recently obtained from the tetrahedron equation. They form a family of quantum $\mathscr R$-matrices of generalized quantum groups interpolating the symmetric tensor representations of $U_q(A^{(1)}_{n-1})$ and the antisymmetric tensor representations of $U_{-q^{-1}}(A^{(1)}_{n-1})$. We show that at $q=0$, they all reduce to the Yang–Baxter maps called combinatorial $\mathscr R$-matrices and describe the latter by an explicit algorithm.
Keywords: tetrahedron equation, Yang–Baxter equation, generalized quantum group, Yang–Baxter map.
Funding agency Grant number
Japan Society for the Promotion of Science 15K13429
This research is supported by Grants-in-Aid for Scientific Research No. 15K13429.
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 1, Pages 1472–1485
DOI: https://doi.org/10.1134/S004057791610007X
Bibliographic databases:
MSC: 17B37, 16T25, 16T30
Language: Russian
Citation: A. Kuniba, “Combinatorial Yang–Baxter maps arising from the tetrahedron equation”, TMF, 189:1 (2016), 84–100; Theoret. and Math. Phys., 189:1 (2016), 1472–1485
Citation in format AMSBIB
\Bibitem{Kun16}
\by A.~Kuniba
\paper Combinatorial Yang--Baxter maps arising from the~tetrahedron equation
\jour TMF
\yr 2016
\vol 189
\issue 1
\pages 84--100
\mathnet{http://mi.mathnet.ru/tmf9037}
\crossref{https://doi.org/10.4213/tmf9037}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1472K}
\elib{https://elibrary.ru/item.asp?id=27350124}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 1
\pages 1472--1485
\crossref{https://doi.org/10.1134/S004057791610007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386870200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959032223}
Linking options:
  • https://www.mathnet.ru/eng/tmf9037
  • https://doi.org/10.4213/tmf9037
  • https://www.mathnet.ru/eng/tmf/v189/i1/p84
  • This publication is cited in the following 4 articles:
    1. Pramod Padmanabhan, Vladimir Korepin, “Solving the Yang-Baxter, tetrahedron and higher simplex equations using Clifford algebras”, Nuclear Physics B, 1007 (2024), 116664  crossref
    2. J.-H. Kwon, M. Okado, “Kirillov-reshetikhin modules of generalized quantum groups of type a”, Publ. Res. Inst. Math. Sci., 57:3-4, SI (2021), 993–1039  crossref  mathscinet  isi
    3. Atsuo Kuniba, “Tetrahedron Equation and Quantum $R$ Matrices for $q$-Oscillator Representations Mixing Particles and Holes”, SIGMA, 14 (2018), 067, 23 pp.  mathnet  crossref
    4. Kuniba A., Maruyama Sh., Okado M., “Multispecies Tasep and the Tetrahedron Equation”, J. Phys. A-Math. Theor., 49:11 (2016), 114001  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :135
    References:64
    First page:10
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025