Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 187, Number 2, Pages 360–382
DOI: https://doi.org/10.4213/tmf9032
(Mi tmf9032)
 

This article is cited in 3 scientific papers (total in 3 papers)

Eigenfunction expansions for the Schrödinger equation with an inverse-square potential

A. G. Smirnov

Lebedev Physical Institute, RAS, Moscow, Russia
Full-text PDF (622 kB) Citations (3)
References:
Abstract: We consider the one-dimensional Schrödinger equation $-f''+q_\kappa f=Ef$ on the positive half-axis with the potential $q_\kappa(r)=(\kappa^2-1/4) r^{-2}$. For each complex number $\vartheta$, we construct a solution $u^\kappa_\vartheta(E)$ of this equation that is analytic in $\kappa$ in a complex neighborhood of the interval $(-1,1)$ and, in particular, at the “singular” point $\kappa=0$. For $-1<\kappa<1$ and real $\vartheta$, the solutions $u^\kappa_\vartheta(E)$ determine a unitary eigenfunction expansion operator $U_{\kappa,\vartheta}\colon L_2(0,\infty)\to L_2(\mathbb R,\mathcal V_{\kappa,\vartheta})$, where $\mathcal V_{\kappa,\vartheta}$ is a positive measure on $\mathbb R$. We show that every self-adjoint realization of the formal differential expression $-\partial^2_r+ q_\kappa(r)$ for the Hamiltonian is diagonalized by the operator $U_{\kappa,\vartheta}$ for some $\vartheta\in\mathbb R$. Using suitable singular Titchmarsh–Weyl $m$-functions, we explicitly find the measures $\mathcal V_{\kappa,\vartheta}$ and prove their continuity in $\kappa$ and $\vartheta$.
Keywords: Schrödinger equation, inverse-square potential, self-adjoint extension, eigenfunction expansion, Titchmarsh–Weyl $m$-function.
Received: 24.08.2015
Revised: 09.11.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 187, Issue 2, Pages 762–781
DOI: https://doi.org/10.1134/S0040577916050123
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Smirnov, “Eigenfunction expansions for the Schrödinger equation with an inverse-square potential”, TMF, 187:2 (2016), 360–382; Theoret. and Math. Phys., 187:2 (2016), 762–781
Citation in format AMSBIB
\Bibitem{Smi16}
\by A.~G.~Smirnov
\paper Eigenfunction expansions for the~Schr\"odinger equation with an~inverse-square potential
\jour TMF
\yr 2016
\vol 187
\issue 2
\pages 360--382
\mathnet{http://mi.mathnet.ru/tmf9032}
\crossref{https://doi.org/10.4213/tmf9032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507543}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..762S}
\elib{https://elibrary.ru/item.asp?id=26414433}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 2
\pages 762--781
\crossref{https://doi.org/10.1134/S0040577916050123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377250400011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84973467505}
Linking options:
  • https://www.mathnet.ru/eng/tmf9032
  • https://doi.org/10.4213/tmf9032
  • https://www.mathnet.ru/eng/tmf/v187/i2/p360
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:449
    Full-text PDF :145
    References:77
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024