|
This article is cited in 3 scientific papers (total in 3 papers)
Eigenfunction expansions for the Schrödinger equation with an inverse-square potential
A. G. Smirnov Lebedev Physical Institute, RAS,
Moscow, Russia
Abstract:
We consider the one-dimensional Schrödinger equation $-f''+q_\kappa f=Ef$ on the positive half-axis with the potential $q_\kappa(r)=(\kappa^2-1/4) r^{-2}$. For each complex number $\vartheta$, we construct a solution $u^\kappa_\vartheta(E)$ of this equation that is analytic in $\kappa$ in a complex neighborhood of the interval $(-1,1)$ and, in particular, at the “singular” point $\kappa=0$. For $-1<\kappa<1$ and real $\vartheta$, the solutions $u^\kappa_\vartheta(E)$ determine a unitary eigenfunction expansion operator $U_{\kappa,\vartheta}\colon L_2(0,\infty)\to L_2(\mathbb R,\mathcal V_{\kappa,\vartheta})$, where $\mathcal V_{\kappa,\vartheta}$ is a positive measure on $\mathbb R$. We show that every self-adjoint realization of the formal differential expression $-\partial^2_r+ q_\kappa(r)$ for the Hamiltonian is diagonalized by the operator $U_{\kappa,\vartheta}$ for some $\vartheta\in\mathbb R$. Using suitable singular Titchmarsh–Weyl $m$-functions, we explicitly find the measures $\mathcal V_{\kappa,\vartheta}$ and prove their continuity in $\kappa$ and $\vartheta$.
Keywords:
Schrödinger equation, inverse-square potential, self-adjoint extension,
eigenfunction expansion, Titchmarsh–Weyl $m$-function.
Received: 24.08.2015 Revised: 09.11.2015
Citation:
A. G. Smirnov, “Eigenfunction expansions for the Schrödinger equation with an inverse-square potential”, TMF, 187:2 (2016), 360–382; Theoret. and Math. Phys., 187:2 (2016), 762–781
Linking options:
https://www.mathnet.ru/eng/tmf9032https://doi.org/10.4213/tmf9032 https://www.mathnet.ru/eng/tmf/v187/i2/p360
|
Statistics & downloads: |
Abstract page: | 449 | Full-text PDF : | 145 | References: | 77 | First page: | 27 |
|