Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 187, Number 2, Pages 360–382
DOI: https://doi.org/10.4213/tmf9032
(Mi tmf9032)
 

This article is cited in 3 scientific papers (total in 3 papers)

Eigenfunction expansions for the Schrödinger equation with an inverse-square potential

A. G. Smirnov

Lebedev Physical Institute, RAS, Moscow, Russia
Full-text PDF (622 kB) Citations (3)
References:
Abstract: We consider the one-dimensional Schrödinger equation f+qκf=Ef on the positive half-axis with the potential qκ(r)=(κ21/4)r2. For each complex number ϑ, we construct a solution uκϑ(E) of this equation that is analytic in κ in a complex neighborhood of the interval (1,1) and, in particular, at the “singular” point κ=0. For 1<κ<1 and real ϑ, the solutions uκϑ(E) determine a unitary eigenfunction expansion operator Uκ,ϑ:L2(0,)L2(R,Vκ,ϑ), where Vκ,ϑ is a positive measure on R. We show that every self-adjoint realization of the formal differential expression 2r+qκ(r) for the Hamiltonian is diagonalized by the operator Uκ,ϑ for some ϑR. Using suitable singular Titchmarsh–Weyl m-functions, we explicitly find the measures Vκ,ϑ and prove their continuity in κ and ϑ.
Keywords: Schrödinger equation, inverse-square potential, self-adjoint extension, eigenfunction expansion, Titchmarsh–Weyl m-function.
Received: 24.08.2015
Revised: 09.11.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 187, Issue 2, Pages 762–781
DOI: https://doi.org/10.1134/S0040577916050123
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Smirnov, “Eigenfunction expansions for the Schrödinger equation with an inverse-square potential”, TMF, 187:2 (2016), 360–382; Theoret. and Math. Phys., 187:2 (2016), 762–781
Citation in format AMSBIB
\Bibitem{Smi16}
\by A.~G.~Smirnov
\paper Eigenfunction expansions for the~Schr\"odinger equation with an~inverse-square potential
\jour TMF
\yr 2016
\vol 187
\issue 2
\pages 360--382
\mathnet{http://mi.mathnet.ru/tmf9032}
\crossref{https://doi.org/10.4213/tmf9032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507543}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..762S}
\elib{https://elibrary.ru/item.asp?id=26414433}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 2
\pages 762--781
\crossref{https://doi.org/10.1134/S0040577916050123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000377250400011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84973467505}
Linking options:
  • https://www.mathnet.ru/eng/tmf9032
  • https://doi.org/10.4213/tmf9032
  • https://www.mathnet.ru/eng/tmf/v187/i2/p360
  • This publication is cited in the following 3 articles:
    1. A. G. Smirnov, “Coupling constant dependence for the Schrödinger equation with an inverse-square potential”, Adv. Oper. Theory, 6:2 (2021), 31  crossref  mathscinet  zmath  isi  scopus
    2. Derezinski J., Faupin J., Nguyen Q.N., Richard S., “On Radial Schrodinger Operators With a Coulomb Potential: General Boundary Conditions”, Adv. Oper. Theory, 5:3 (2020), 1132–1192  crossref  mathscinet  isi
    3. A. G. Smirnov, “A Gronwall-type trigonometric inequality”, Am. Math. Mon., 125:5 (2018), 453–456  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:475
    Full-text PDF :157
    References:82
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025