Abstract:
We classify all four-dimensional real Lie bialgebras of symplectic type and obtain the classical r-matrices for these Lie bialgebras and Poisson structures on all the associated four-dimensional Poisson–Lie groups. We obtain some new integrable models where a Poisson–Lie group plays the role of the phase space and its dual Lie group plays the role of the symmetry group of the system.
Citation:
J. Abedi-Fardad, A. Rezaei-Aghdam, Gh. Haghighatdoost, “Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson–Lie groups”, TMF, 190:1 (2017), 3–20; Theoret. and Math. Phys., 190:1 (2017), 1–17
\Bibitem{AbeRezHag17}
\by J.~Abedi-Fardad, A.~Rezaei-Aghdam, Gh.~Haghighatdoost
\paper Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson--Lie groups
\jour TMF
\yr 2017
\vol 190
\issue 1
\pages 3--20
\mathnet{http://mi.mathnet.ru/tmf9020}
\crossref{https://doi.org/10.4213/tmf9020}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598770}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...190....1A}
\elib{https://elibrary.ru/item.asp?id=28172167}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 190
\issue 1
\pages 1--17
\crossref{https://doi.org/10.1134/S0040577917010019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394442700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011818216}
Linking options:
https://www.mathnet.ru/eng/tmf9020
https://doi.org/10.4213/tmf9020
https://www.mathnet.ru/eng/tmf/v190/i1/p3
This publication is cited in the following 6 articles:
J. de Lucas, D. Wysocki, “Darboux families and the classification of real four-dimensional indecomposable coboundary Lie bialgebras”, Symmetry-Basel, 13:3 (2021), 465
G. Haghighatdoost, S. Abdolhadi-Zangakani, J. Abedi-Fardad, “Compatible Poisson structures and bi-Hamiltonian systems related to low-dimensional Lie algebras”, J. Nonlinear Math. Phys., 28:2 (2021), 194–204
J. de Lucas, D. Wysocki, “A grassmann and graded approach to coboundary lie bialgebras, their classification, and Yang-Baxter equations”, J. Lie Theory, 30:4 (2020), 1161–1194
G. Haghighatdoost, Z. Ravanpak, A. Rezaei-Aghdam, “Some remarks on invariant Poisson quasi-Nijenhuis structures on lie groups”, Int. J. Geom. Methods Mod. Phys., 16:7 (2019), 1950097
Z. Ravanpak, A. Rezaei-Aghdam, G. Haghighatdoost, “Invariant Poisson–Nijenhuis structures on Lie groups and classification”, Int. J. Geom. Methods Mod. Phys., 15:4 (2018), 1850059
Abedi-Fardad J., Rezaei-Aghdam A., Haghighatdoost G., “Some Compatible Poisson Structures and Integrable Bi-Hamiltonian Systems on Four Dimensional and Nilpotent Six Dimensional Symplectic Real Lie Groups”, J. Nonlinear Math. Phys., 24:2 (2017), 149–170