Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 2, Pages 223–243
DOI: https://doi.org/10.4213/tmf9012
(Mi tmf9012)
 

This article is cited in 9 scientific papers (total in 9 papers)

Anosov C-systems and random number generators

G. K. Savvidi

Institute of Nuclear Physics, National Research Center "Demokritos", Athens, Greece
Full-text PDF (692 kB) Citations (9)
References:
Abstract: We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.
Keywords: Anosov C-system, hyperbolic dynamical system, Kolmogorov entropy, Monte Carlo method, high energy physics, elementary particle, lattice quantum chromodynamics.
Funding agency Grant number
European Union's Horizon 2020 644121
This research was supported in part by the European Union's Horizon 2020 research and innovation program under a Marie Skĺodowska-Curie grant (Agreement No. 644121).
Received: 22.07.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 2, Pages 1155–1171
DOI: https://doi.org/10.1134/S004057791608002X
Bibliographic databases:
Language: Russian
Citation: G. K. Savvidi, “Anosov C-systems and random number generators”, TMF, 188:2 (2016), 223–243; Theoret. and Math. Phys., 188:2 (2016), 1155–1171
Citation in format AMSBIB
\Bibitem{Sav16}
\by G.~K.~Savvidi
\paper Anosov C-systems and random number generators
\jour TMF
\yr 2016
\vol 188
\issue 2
\pages 223--243
\mathnet{http://mi.mathnet.ru/tmf9012}
\crossref{https://doi.org/10.4213/tmf9012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588999}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188.1155S}
\elib{https://elibrary.ru/item.asp?id=26604199}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 2
\pages 1155--1171
\crossref{https://doi.org/10.1134/S004057791608002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382875800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84986230704}
Linking options:
  • https://www.mathnet.ru/eng/tmf9012
  • https://doi.org/10.4213/tmf9012
  • https://www.mathnet.ru/eng/tmf/v188/i2/p223
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :128
    References:57
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024