Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 188, Number 2, Pages 185–222
DOI: https://doi.org/10.4213/tmf9005
(Mi tmf9005)
 

Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations

A. M. Levinab, M. A. Olshanetskyc, A. V. Zotovade

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Department of Mathematics, National Research University "Higher School of Economics", Moscow, Russia
c Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
d Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
e Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We construct twisted Calogero–Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D'Hoker–Phong and Bordner–Corrigan–Sasaki–Takasaki systems. In addition, we construct the corresponding twisted classical dynamical $r$-matrices and the Knizhnik–Zamolodchikov–Bernard equations related to the automorphisms of Lie algebras.
Keywords: elliptic integrable system, finite-order Lie algebra automorphism, Higgs bundle, Knizhnik–Zamolodchikov–Bernard equation.
Funding agency Grant number
Russian Science Foundation 14-50-00150
The research of M.A. Olshanetsky was performed at the Institute for Information Transmission Problems and was supported by a grant from the Russian Science Foundation (Grant No. 14-50-00150).
Received: 14.07.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 188, Issue 2, Pages 1121–1154
DOI: https://doi.org/10.1134/S0040577916080018
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations”, TMF, 188:2 (2016), 185–222; Theoret. and Math. Phys., 188:2 (2016), 1121–1154
Citation in format AMSBIB
\Bibitem{LevOlsZot16}
\by A.~M.~Levin, M.~A.~Olshanetsky, A.~V.~Zotov
\paper Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero--Moser systems, and KZB equations
\jour TMF
\yr 2016
\vol 188
\issue 2
\pages 185--222
\mathnet{http://mi.mathnet.ru/tmf9005}
\crossref{https://doi.org/10.4213/tmf9005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588998}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...188.1121L}
\elib{https://elibrary.ru/item.asp?id=26604198}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 188
\issue 2
\pages 1121--1154
\crossref{https://doi.org/10.1134/S0040577916080018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382875800001}
\elib{https://elibrary.ru/item.asp?id=27575828}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84986199784}
Linking options:
  • https://www.mathnet.ru/eng/tmf9005
  • https://doi.org/10.4213/tmf9005
  • https://www.mathnet.ru/eng/tmf/v188/i2/p185
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:459
    Full-text PDF :178
    References:52
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024