Abstract:
We obtain blowup conditions for the solutions of initial boundary-value problems for the nonlinear equation of ion sound waves in a hydrogen plasma in the approximation of “hot” electrons and “heavy” ions. A specific characteristic of this nonlinear equation is the noncoercive nonlinearity of the form ∂t|∇u|2, which complicates its study by any energy method. We solve this problem by the Mitidieri–Pohozaev method of nonlinear capacity.
Citation:
M. O. Korpusov, “The finite-time blowup of the solution of an initial boundary-value
problem for the nonlinear equation of ion sound waves”, TMF, 187:3 (2016), 447–454; Theoret. and Math. Phys., 187:3 (2016), 835–841
\Bibitem{Kor16}
\by M.~O.~Korpusov
\paper The~finite-time blowup of the~solution of an~initial boundary-value
problem for the~nonlinear equation of ion sound waves
\jour TMF
\yr 2016
\vol 187
\issue 3
\pages 447--454
\mathnet{http://mi.mathnet.ru/tmf8954}
\crossref{https://doi.org/10.4213/tmf8954}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535389}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..835K}
\elib{https://elibrary.ru/item.asp?id=26414439}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 3
\pages 835--841
\crossref{https://doi.org/10.1134/S0040577916060040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000379309300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977071817}
Linking options:
https://www.mathnet.ru/eng/tmf8954
https://doi.org/10.4213/tmf8954
https://www.mathnet.ru/eng/tmf/v187/i3/p447
This publication is cited in the following 4 articles:
M. O. Korpusov, “Nonlinear equations of the theory of ion-sound plasma waves”, Comput. Math. Math. Phys., 61:11 (2021), 1886–1894
I. I. Kolotov, A. A. Panin, “On Nonextendable Solutions and Blow-Ups of Solutions of Pseudoparabolic Equations with Coercive and Constant-Sign Nonlinearities: Analytical and Numerical Study”, Math. Notes, 105:5 (2019), 694–706
M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, E. V. Yushkov, “Blow-up of solutions of a full non-linear equation of ion-sound waves
in a plasma with non-coercive non-linearities”, Izv. Math., 82:2 (2018), 283–317
M. O. Korpusov, D. V. Lukyanenko, E. A. Ovsyannikov, A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya odnogo uravneniya s kvadratichnoi nekoertsitivnoi nelineinostyu”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:2 (2017), 107–123