Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 185, Number 3, Pages 371–409
DOI: https://doi.org/10.4213/tmf8951
(Mi tmf8951)
 

This article is cited in 5 scientific papers (total in 5 papers)

Topological recursion for Gaussian means and cohomological field theories

J. E. Andersenab, L. O. Chekhovc, P. Norburyd, R. C. Pennereb

a Center for Quantum Geometry of Moduli Spaces, Århus University, Denmark
b California Institute of Technology, Pasadena, USA
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
d University of Melbourne, Melbourne, Australia
e Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
Full-text PDF (885 kB) Citations (5)
References:
Abstract: We introduce explicit relations between genus-filtrated $s$-loop means of the Gaussian matrix model and terms of the genus expansion of the Kontsevich–Penner matrix model (KPMM{), which is the generating function for volumes of discretized (openm) moduli spaces $M_{g,s}^\mathrm{disc}$ (discrete volumes). Using these relations, we express Gaussian means in all orders of the genus expansion as polynomials in special times weighted by ancestor invariants of an underlying cohomological field theory. We translate the topological recursion of the Gaussian model into recurrence relations for the coefficients of this expansion, which allows proving that they are integers and positive. We find the coefficients in the first subleading order for $\\mathcal M_{g,1}$ for all $g$ in three ways: using the refined Harer–Zagier recursion, using the Givental-type decomposition of the KPMM, and counting diagrams explicitly.
Keywords: chord diagram, Givental decomposition, Kontsevich–Penner matrix model, discrete volume, moduli space, Deligne–Mumford compactification.
Funding agency Grant number
Russian Science Foundation 14-50-00005
The research of L. O. Chekhov (the results in Secs. 2, 3, and 6.2) was funded by a grant from the Russian Science Foundation (Project No. 14-50-00005).
Received: 15.04.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 185, Issue 3, Pages 1685–1717
DOI: https://doi.org/10.1007/s11232-015-0373-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: J. E. Andersen, L. O. Chekhov, P. Norbury, R. C. Penner, “Topological recursion for Gaussian means and cohomological field theories”, TMF, 185:3 (2015), 371–409; Theoret. and Math. Phys., 185:3 (2015), 1685–1717
Citation in format AMSBIB
\Bibitem{AndCheNor15}
\by J.~E.~Andersen, L.~O.~Chekhov, P.~Norbury, R.~C.~Penner
\paper Topological recursion for Gaussian means and cohomological field
theories
\jour TMF
\yr 2015
\vol 185
\issue 3
\pages 371--409
\mathnet{http://mi.mathnet.ru/tmf8951}
\crossref{https://doi.org/10.4213/tmf8951}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438626}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...185.1685A}
\elib{https://elibrary.ru/item.asp?id=24850743}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 185
\issue 3
\pages 1685--1717
\crossref{https://doi.org/10.1007/s11232-015-0373-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368194800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953220010}
Linking options:
  • https://www.mathnet.ru/eng/tmf8951
  • https://doi.org/10.4213/tmf8951
  • https://www.mathnet.ru/eng/tmf/v185/i3/p371
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024