Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 187, Number 1, Pages 39–57
DOI: https://doi.org/10.4213/tmf8950
(Mi tmf8950)
 

This article is cited in 7 scientific papers (total in 7 papers)

"Quantization" of an isomonodromic Hamiltonian Garnier system with two degrees of freedom

D. P. Novikova, B. I. Suleimanovb

a Omsk State Technical University, Omsk, Russia
b Institute of Mathematics with Computing Centre, RAS, Ufa, Russia
Full-text PDF (513 kB) Citations (7)
References:
Abstract: We construct solutions of analogues of a time-dependent Schrödinger equation corresponding to an isomonodromic polynomial Hamiltonian of a Garnier system with two degrees of freedom. The solutions are determined by solutions of linear differential equations whose compatibility condition is the given Garnier system. With explicit substitutions, these solutions reduce to solutions of the Belavin–Polyakov–Zamolodchikov equations with four times and two spatial variables.
Keywords: Schrödinger equation, Hamiltonian, isomonodromic deformation, Garnier system, Belavin–Polyakov–Zamolodchikov equation, Painlevé equation.
Funding agency Grant number
Russian Science Foundation 14-11-00078
The research of B. I. Suleimanov is funded by a grant from the Russian Scientific Foundation (Project No. 14-11-00078).
Received: 22.04.2015
Revised: 24.06.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 187, Issue 1, Pages 479–496
DOI: https://doi.org/10.1134/S0040577916040048
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. P. Novikov, B. I. Suleimanov, “"Quantization" of an isomonodromic Hamiltonian Garnier system with two degrees of freedom”, TMF, 187:1 (2016), 39–57; Theoret. and Math. Phys., 187:1 (2016), 479–496
Citation in format AMSBIB
\Bibitem{NovSul16}
\by D.~P.~Novikov, B.~I.~Suleimanov
\paper ``Quantization" of an~isomonodromic Hamiltonian Garnier system with two degrees of freedom
\jour TMF
\yr 2016
\vol 187
\issue 1
\pages 39--57
\mathnet{http://mi.mathnet.ru/tmf8950}
\crossref{https://doi.org/10.4213/tmf8950}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507522}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..479N}
\elib{https://elibrary.ru/item.asp?id=25865550}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 1
\pages 479--496
\crossref{https://doi.org/10.1134/S0040577916040048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376274300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969760750}
Linking options:
  • https://www.mathnet.ru/eng/tmf8950
  • https://doi.org/10.4213/tmf8950
  • https://www.mathnet.ru/eng/tmf/v187/i1/p39
  • This publication is cited in the following 7 articles:
    1. V. A. Pavlenko, “Solutions of Analogs of Time-Dependent Schrödinger Equations Corresponding to a Pair of H2+2+1 Hamiltonian Systems in the Hierarchy of Degenerations of an Isomonodromic Garnier System”, Diff Equat, 60:1 (2024), 77  crossref
    2. V. A Pavlenko, “REShENIYa ANALOGOV VREMENNYKh URAVNENIY ShR¨EDINGERA, SOOTVETSTVUYuShchIKh PARE GAMIL'TONOVYKh SISTEM ????2+2+1 IERARKhII VYROZhDENIY IZOMONODROMNOY SISTEMY GARN'E”, Differencialʹnye uravneniâ, 60:1 (2024), 76  crossref
    3. V. A. Pavlenko, “Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of H3+2 Hamiltonian systems”, Theoret. and Math. Phys., 212:3 (2022), 1181–1192  mathnet  crossref  crossref  mathscinet  adsnasa
    4. B. I. Suleimanov, “Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom”, St. Petersburg Math. J., 33:6 (2022), 995–1009  mathnet  crossref
    5. V. A. Pavlenko, B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system H2+1+1+1”, Ufa Math. J., 10:4 (2018), 92–102  mathnet  crossref  isi
    6. V. A. Pavlenko, B. I. Suleimanov, ““Quantizations” of isomonodromic Hamilton system H72+1”, Ufa Math. J., 9:4 (2017), 97–107  mathnet  crossref  isi  elib
    7. B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential”, Ufa Math. J., 8:3 (2016), 136–154  mathnet  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:546
    Full-text PDF :217
    References:104
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025