Abstract:
We construct solutions of analogues of a time-dependent Schrödinger equation corresponding to an isomonodromic polynomial Hamiltonian of a Garnier system with two degrees of freedom. The solutions are determined by solutions of linear differential equations whose compatibility condition is the given Garnier system. With explicit substitutions, these solutions reduce to solutions of the Belavin–Polyakov–Zamolodchikov equations with four times and two spatial variables.
Citation:
D. P. Novikov, B. I. Suleimanov, “"Quantization" of an isomonodromic Hamiltonian Garnier system with two degrees of freedom”, TMF, 187:1 (2016), 39–57; Theoret. and Math. Phys., 187:1 (2016), 479–496
\Bibitem{NovSul16}
\by D.~P.~Novikov, B.~I.~Suleimanov
\paper ``Quantization" of an~isomonodromic Hamiltonian Garnier system with two degrees of freedom
\jour TMF
\yr 2016
\vol 187
\issue 1
\pages 39--57
\mathnet{http://mi.mathnet.ru/tmf8950}
\crossref{https://doi.org/10.4213/tmf8950}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507522}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..479N}
\elib{https://elibrary.ru/item.asp?id=25865550}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 1
\pages 479--496
\crossref{https://doi.org/10.1134/S0040577916040048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376274300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969760750}
Linking options:
https://www.mathnet.ru/eng/tmf8950
https://doi.org/10.4213/tmf8950
https://www.mathnet.ru/eng/tmf/v187/i1/p39
This publication is cited in the following 7 articles:
V. A. Pavlenko, “Solutions of Analogs of Time-Dependent Schrödinger
Equations Corresponding to a Pair of H2+2+1
Hamiltonian Systems in the Hierarchy of Degenerations
of an Isomonodromic Garnier System”, Diff Equat, 60:1 (2024), 77
V. A Pavlenko, “REShENIYa ANALOGOV VREMENNYKh URAVNENIY ShR¨EDINGERA, SOOTVETSTVUYuShchIKh PARE GAMIL'TONOVYKh SISTEM ????2+2+1 IERARKhII VYROZhDENIY IZOMONODROMNOY SISTEMY GARN'E”, Differencialʹnye uravneniâ, 60:1 (2024), 76
V. A. Pavlenko, “Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of H3+2 Hamiltonian systems”, Theoret. and Math. Phys., 212:3 (2022), 1181–1192
B. I. Suleimanov, “Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom”, St. Petersburg Math. J., 33:6 (2022), 995–1009
V. A. Pavlenko, B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system H2+1+1+1”, Ufa Math. J., 10:4 (2018), 92–102
V. A. Pavlenko, B. I. Suleimanov, ““Quantizations” of isomonodromic Hamilton system H72+1”, Ufa Math. J., 9:4 (2017), 97–107
B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential”, Ufa Math. J., 8:3 (2016), 136–154