Abstract:
Based on the method of quasiaverages, we classify magnetic and superfluid equilibrium states in magnets with the spin s=1. Under certain simplifications, assumptions about the residual symmetry of degenerate states and the transformation properties of order parameter operators under transformations generated by additive integrals of motions lead to linear algebraic equations for a classification of the equilibrium means of the order parameters. We consider different cases of the magnetic SO(3) or SU(3) symmetry breaking and obtain solutions for the vector and tensor order parameters for particular forms of the parameters of the residual symmetry generators. We study the equilibriums of magnets with simultaneously broken phase and magnetic symmetries. We find solutions of the classification equations for superfluid equilibrium states and establish relations between the parameters of the residual symmetry generator that allow the thermodynamic coexistence of nonzero equilibrium means of the order parameters.
Keywords:
spin, quadrupole matrix, order parameter, symmetry, quasiaverage.
Citation:
M. Yu. Kovalevsky, “Classifying magnetic and superfluid equilibrium states in magnets with the spin s=1”, TMF, 186:3 (2016), 456–474; Theoret. and Math. Phys., 186:3 (2016), 395–410
\Bibitem{Kov16}
\by M.~Yu.~Kovalevsky
\paper Classifying magnetic and superfluid equilibrium states in magnets with the~spin $s=1$
\jour TMF
\yr 2016
\vol 186
\issue 3
\pages 456--474
\mathnet{http://mi.mathnet.ru/tmf8944}
\crossref{https://doi.org/10.4213/tmf8944}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507515}
\elib{https://elibrary.ru/item.asp?id=25707871}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 186
\issue 3
\pages 395--410
\crossref{https://doi.org/10.1134/S0040577916030089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373965600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962767670}
Linking options:
https://www.mathnet.ru/eng/tmf8944
https://doi.org/10.4213/tmf8944
https://www.mathnet.ru/eng/tmf/v186/i3/p456
This publication is cited in the following 1 articles:
N. N. Bogolyubov (Jr.), A. V. Glushchenko, M. Yu. Kovalevsky, “Quasiaverages and degenerate quantum equilibriums of magnetic systems with SU(3) symmetry of the exchange interaction”, Theoret. and Math. Phys., 195:2 (2018), 704–717