Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 184, Number 3, Pages 520–529
DOI: https://doi.org/10.4213/tmf8935
(Mi tmf8935)
 

Soliton solutions of classical equations of motions in the modified formulation of the Yang–Mills theory

A. A. Slavnovab

a Steklov Mathematical Institute of the~Russian Academy of Sciences, Moscow, Russia
b Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
References:
Abstract: We show that soliton solutions of classical field equations exist in the modified formulation of the Yang–Mills theory, which produces the same formal perturbation theory as the standard formulation.
Keywords: soliton, gauge field, Yang–Mills theory.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations
Russian Foundation for Basic Research 14-01-00695
This work was supported in part by the Russian Academy of Sciences (Program "Nonlinear Dynamics") and the Russian Foundation for Basic Research (Grant No. 14-01 00695).
Received: 28.01.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 184, Issue 3, Pages 1342–1349
DOI: https://doi.org/10.1007/s11232-015-0343-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Slavnov, “Soliton solutions of classical equations of motions in the modified formulation of the Yang–Mills theory”, TMF, 184:3 (2015), 520–529; Theoret. and Math. Phys., 184:3 (2015), 1342–1349
Citation in format AMSBIB
\Bibitem{Sla15}
\by A.~A.~Slavnov
\paper Soliton solutions of classical equations of motions in the~modified formulation of the~Yang--Mills theory
\jour TMF
\yr 2015
\vol 184
\issue 3
\pages 520--529
\mathnet{http://mi.mathnet.ru/tmf8935}
\crossref{https://doi.org/10.4213/tmf8935}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399701}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...184.1342S}
\elib{https://elibrary.ru/item.asp?id=24073887}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 184
\issue 3
\pages 1342--1349
\crossref{https://doi.org/10.1007/s11232-015-0343-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000362684300017}
\elib{https://elibrary.ru/item.asp?id=24960360}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943623310}
Linking options:
  • https://www.mathnet.ru/eng/tmf8935
  • https://doi.org/10.4213/tmf8935
  • https://www.mathnet.ru/eng/tmf/v184/i3/p520
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :154
    References:92
    First page:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024