Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 184, Number 2, Pages 200–211
DOI: https://doi.org/10.4213/tmf8933
(Mi tmf8933)
 

This article is cited in 3 scientific papers (total in 3 papers)

Difference Schrödinger equation and quasisymmetric polynomials

A. B. Shabat

Landau Institute for Theoretical Physics, RAS, Moscow, Russia
Full-text PDF (481 kB) Citations (3)
References:
Abstract: We study the singularity of solutions of the Schrödinger equation with a finite potential at the point $k=0$. In the case of delta-type potentials, we show that the nature of this singularity is automodel in a certain sense. We discuss using the obtained results to construct an approximate solution of the inverse scattering problem on the whole axis. For this, we introduce the concept of a quasisymmetric polynomial associated with a given curve.
Keywords: Schrödinger operator, Green's function, additional spectrum, difference model.
Received: 18.03.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 184, Issue 2, Pages 1067–1077
DOI: https://doi.org/10.1007/s11232-015-0318-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. B. Shabat, “Difference Schrödinger equation and quasisymmetric polynomials”, TMF, 184:2 (2015), 200–211; Theoret. and Math. Phys., 184:2 (2015), 1067–1077
Citation in format AMSBIB
\Bibitem{Sha15}
\by A.~B.~Shabat
\paper Difference Schr\"odinger equation and quasisymmetric polynomials
\jour TMF
\yr 2015
\vol 184
\issue 2
\pages 200--211
\mathnet{http://mi.mathnet.ru/tmf8933}
\crossref{https://doi.org/10.4213/tmf8933}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399675}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...184.1067S}
\elib{https://elibrary.ru/item.asp?id=24073861}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 184
\issue 2
\pages 1067--1077
\crossref{https://doi.org/10.1007/s11232-015-0318-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361532600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84942154609}
Linking options:
  • https://www.mathnet.ru/eng/tmf8933
  • https://doi.org/10.4213/tmf8933
  • https://www.mathnet.ru/eng/tmf/v184/i2/p200
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024