Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 185, Number 1, Pages 139–150
DOI: https://doi.org/10.4213/tmf8932
(Mi tmf8932)
 

Generalized Pascal's triangles and singular elements of modules of Lie algebras

V. D. Lyakhovsky, O. V. Postnova

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We consider the problem of determining the multiplicity function $m_{\xi}^{\otimes^p\omega}$ in the tensor power decomposition of a module of a semisimple algebra $\mathfrak{g}$ into irreducible submodules. For this, we propose to pass to the corresponding decomposition of a singular element $\Psi((L_g^\omega)^{\otimes^p})$ of the module tensor power into singular elements of irreducible submodules and formulate the problem of determining the function $M_{\xi}^{\\otimes^p\omega}$. This function satisfies a system of recurrence relations that corresponds to the procedure for multiplying modules. To solve this problem, we introduce a special combinatorial object, a generalized $(g,\omega)$ pyramid, i.e., a set of numbers $(p,\{m_i\})_{g,\omega}$ satisfying the same system of recurrence relations. We prove that $M_{\xi}^{\otimes^p\omega}$ can be represented as a linear combination of the corresponding $(p,\{m_i\})_{g,\omega}$. We illustrate the obtained solution with several examples of modules of the algebras $sl(3)$ and $so(5)$.
Keywords: theory of Lie algebra representation, tensor product of modules, Weyl formula.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-09148
English version:
Theoretical and Mathematical Physics, 2015, Volume 185, Issue 1, Pages 1481–1491
DOI: https://doi.org/10.1007/s11232-015-0357-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. D. Lyakhovsky, O. V. Postnova, “Generalized Pascal's triangles and singular elements of modules of Lie algebras”, TMF, 185:1 (2015), 139–150; Theoret. and Math. Phys., 185:1 (2015), 1481–1491
Citation in format AMSBIB
\Bibitem{LyaPos15}
\by V.~D.~Lyakhovsky, O.~V.~Postnova
\paper Generalized Pascal's triangles and singular elements of modules of Lie algebras
\jour TMF
\yr 2015
\vol 185
\issue 1
\pages 139--150
\mathnet{http://mi.mathnet.ru/tmf8932}
\crossref{https://doi.org/10.4213/tmf8932}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438610}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...185.1481L}
\elib{https://elibrary.ru/item.asp?id=24850691}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 185
\issue 1
\pages 1481--1491
\crossref{https://doi.org/10.1007/s11232-015-0357-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000364494700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84946433740}
Linking options:
  • https://www.mathnet.ru/eng/tmf8932
  • https://doi.org/10.4213/tmf8932
  • https://www.mathnet.ru/eng/tmf/v185/i1/p139
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :152
    References:53
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024