Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 185, Number 1, Pages 37–56
DOI: https://doi.org/10.4213/tmf8927
(Mi tmf8927)
 

This article is cited in 15 scientific papers (total in 15 papers)

Random interface growth in a random environment: Renormalization group analysis of a simple model

N. V. Antonov, P. I. Kakin

Physics Faculty, St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We study the effects of turbulent mixing on the random growth of an interface in the problem of the deposition of a substance on a substrate. The growth is modeled by the well-known Kardar–Parisi–Zhang model. The turbulent advecting velocity field is modeled by the Kraichnan rapid-change ensemble: Gaussian statistics with the correlation function $\langle vv\rangle \propto \delta(t-t')k^{-d-\xi}$, where $k$ is the wave number and $\xi$ is a free parameter, $0<\xi<2$. We study the effects of the fluid compressibility. Using the field theory renormalization group, we show that depending on the relation between the exponent $\xi$ and the spatial dimension $d$, the system manifests different types of large-scale, long-time asymptotic behavior associated with four possible fixed points of the renormalization group equations. In addition to the known regimes (ordinary diffusion, the ordinary growth process, and a passively advected scalar field), we establish the existence of a new nonequilibrium universality class. We calculate the fixed-point coordinates and their stability regions and critical dimensions to the first order of the double expansion in $\xi$ and $\varepsilon=2-d$ (one-loop approximation). It turns out that for an incompressible fluid, the most realistic values $\xi=4/3$ or $\xi=2$ and $d=1$ or $d=2$ correspond to the case of a passive scalar field, where the nonlinearity of the Kardar–Parisi–Zhang model is irrelevant and the interface growth is completely determined by the turbulent transfer. If the compressibility becomes sufficiently strong, then a crossover occurs in the critical behavior, and these values of $d$ and $\xi$ are in the stability region of the new regime, where the advection and nonlinearity are both important. But the coordinates of the fixed point for this regime are in the unphysical region, and its physical interpretation hence remains an open problem.
Keywords: statistical mechanics, critical behavior, renormalization group, nonequilibrium system, turbulence.
Funding agency Grant number
Saint Petersburg State University 11.38.185.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 185, Issue 1, Pages 1391–1407
DOI: https://doi.org/10.1007/s11232-015-0348-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. V. Antonov, P. I. Kakin, “Random interface growth in a random environment: Renormalization group analysis of a simple model”, TMF, 185:1 (2015), 37–56; Theoret. and Math. Phys., 185:1 (2015), 1391–1407
Citation in format AMSBIB
\Bibitem{AntKak15}
\by N.~V.~Antonov, P.~I.~Kakin
\paper Random interface growth in a~random environment: Renormalization group analysis of a~simple model
\jour TMF
\yr 2015
\vol 185
\issue 1
\pages 37--56
\mathnet{http://mi.mathnet.ru/tmf8927}
\crossref{https://doi.org/10.4213/tmf8927}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438601}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...185.1391A}
\elib{https://elibrary.ru/item.asp?id=24850664}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 185
\issue 1
\pages 1391--1407
\crossref{https://doi.org/10.1007/s11232-015-0348-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000364494700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84946411017}
Linking options:
  • https://www.mathnet.ru/eng/tmf8927
  • https://doi.org/10.4213/tmf8927
  • https://www.mathnet.ru/eng/tmf/v185/i1/p37
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :133
    References:72
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024