|
This article is cited in 1 scientific paper (total in 1 paper)
The functional squeeze operator algebra in Maxwell–Chern–Simons electrodynamics
A. A. Andrianova, S. S. Kolevatova, R. Soldatib a St. Petersburg State University, St. Petersburg, Russia
b Dipartimento di Fisica, Università di Bologna, Istituto
Nazionale di Fisica Nucleare, Sezione di Bologna, Bologna, Italy
Abstract:
Using annihilation and creation squeeze operators, we construct a basis of Hermitian generators obeying the $SU(2)$ Lie algebra. We discuss the relations between the Maxwell–Chern–Simons electrodynamics vacuum and the normal vacuum and show that the most general Bogoliubov transformation is just a functional rotation in the Fock space.
Keywords:
Maxwell–Chern–Simons electrodynamics, squeezed state, Bogoliubov transformation.
Received: 28.02.2015
Citation:
A. A. Andrianov, S. S. Kolevatov, R. Soldati, “The functional squeeze operator algebra in Maxwell–Chern–Simons electrodynamics”, TMF, 184:3 (2015), 367–379; Theoret. and Math. Phys., 184:3 (2015), 1213–1223
Linking options:
https://www.mathnet.ru/eng/tmf8913https://doi.org/10.4213/tmf8913 https://www.mathnet.ru/eng/tmf/v184/i3/p367
|
|