Abstract:
A nonlocal Hamiltonian formalism for semi-Hamiltonian systems of the hydrodynamic type is constructed using the formal Baker–Akhiezer functions for a (2+12+1)-dimensional nn-wave system.
Citation:
L. V. Bogdanov, E. V. Ferapontov, “A nonlocal Hamiltonian formalism for semi-Hamiltonian systems of the hydrodynamic type”, TMF, 116:1 (1998), 113–121; Theoret. and Math. Phys., 116:1 (1998), 829–835
\Bibitem{BogFer98}
\by L.~V.~Bogdanov, E.~V.~Ferapontov
\paper A~nonlocal Hamiltonian formalism for semi-Hamiltonian systems of the hydrodynamic type
\jour TMF
\yr 1998
\vol 116
\issue 1
\pages 113--121
\mathnet{http://mi.mathnet.ru/tmf891}
\crossref{https://doi.org/10.4213/tmf891}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1700693}
\zmath{https://zbmath.org/?q=an:0965.37045}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 116
\issue 1
\pages 829--835
\crossref{https://doi.org/10.1007/BF02557125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076425700004}
Linking options:
https://www.mathnet.ru/eng/tmf891
https://doi.org/10.4213/tmf891
https://www.mathnet.ru/eng/tmf/v116/i1/p113
This publication is cited in the following 5 articles:
Maltsev A.Ya., Novikov S.P., “Poisson Brackets of Hydrodynamic Type and Their Generalizations”, J. Exp. Theor. Phys., 132:4, SI (2021), 645–657
Bulchandani V.B., “On Classical Integrability of the Hydrodynamics of Quantum Integrable Systems”, J. Phys. A-Math. Theor., 50:43 (2017), 435203
Maltsev, AY, “Weakly nonlocal symplectic structures, Whitham method and weakly nonlocal symplectic structures of hydrodynamic type”, Journal of Physics A-Mathematical and General, 38:3 (2005), 637
Ferapontov, EV, “Reciprocal transformations of Hamiltonian operators of hydrodynamic type: Nonlocal Hamiltonian formalism for linearly degenerate systems”, Journal of Mathematical Physics, 44:3 (2003), 1150
Maltsev A.Y., Novikov S.P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Physica D, 156:1–2 (2001), 53–80