Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 185, Number 1, Pages 86–98
DOI: https://doi.org/10.4213/tmf8902
(Mi tmf8902)
 

This article is cited in 2 scientific papers (total in 2 papers)

Quantum particle in a random medium

G. V. Efimov

Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
Full-text PDF (382 kB) Citations (2)
References:
Abstract: We describe the behavior of a quantum particle in a random medium using the Green's function in the functional integral representation and propose methods for evaluating it. We calculate the localization length in the case of motion in a disordered medium and in a medium described by a random Gaussian-type potential. We consider the motion of the quantum particle in the quantized-field vacuum and show the difference between the relativistic and nonrelativistic approaches.
Keywords: quantum mechanics, random medium, localization length, Green's function, functional integral, nonrelativistic dynamics, relativistic dynamics.
English version:
Theoretical and Mathematical Physics, 2015, Volume 185, Issue 1, Pages 1433–1444
DOI: https://doi.org/10.1007/s11232-015-0352-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. V. Efimov, “Quantum particle in a random medium”, TMF, 185:1 (2015), 86–98; Theoret. and Math. Phys., 185:1 (2015), 1433–1444
Citation in format AMSBIB
\Bibitem{Efi15}
\by G.~V.~Efimov
\paper Quantum particle in a~random medium
\jour TMF
\yr 2015
\vol 185
\issue 1
\pages 86--98
\mathnet{http://mi.mathnet.ru/tmf8902}
\crossref{https://doi.org/10.4213/tmf8902}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438605}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...185.1433E}
\elib{https://elibrary.ru/item.asp?id=24850680}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 185
\issue 1
\pages 1433--1444
\crossref{https://doi.org/10.1007/s11232-015-0352-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000364494700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84946433738}
Linking options:
  • https://www.mathnet.ru/eng/tmf8902
  • https://doi.org/10.4213/tmf8902
  • https://www.mathnet.ru/eng/tmf/v185/i1/p86
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :181
    References:52
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024