Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 185, Number 3, Pages 460–470
DOI: https://doi.org/10.4213/tmf8897
(Mi tmf8897)
 

This article is cited in 4 scientific papers (total in 4 papers)

Quantum generalized cluster algebras and quantum dilogarithms of higher degrees

T. Nakanishi

Graduate School of Mathematics, Nagoya University, Nagoya, Japan
Full-text PDF (398 kB) Citations (4)
References:
Abstract: We extend the notion of quantizing the coefficients of ordinary cluster algebras to the generalized cluster algebras of Chekhov and Shapiro. In parallel to the ordinary case, it is tightly integrated with certain generalizations of the ordinary quantum dilogarithm, which we call the quantum dilogarithms of higher degrees. As an application, we derive the identities of these generalized quantum dilogarithms associated with any period of quantum $Y$-seeds.
Keywords: cluster algebra, quantum dilogarithm.
English version:
Theoretical and Mathematical Physics, 2015, Volume 185, Issue 3, Pages 1759–1768
DOI: https://doi.org/10.1007/s11232-015-0377-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. Nakanishi, “Quantum generalized cluster algebras and quantum dilogarithms of higher degrees”, TMF, 185:3 (2015), 460–470; Theoret. and Math. Phys., 185:3 (2015), 1759–1768
Citation in format AMSBIB
\Bibitem{Nak15}
\by T.~Nakanishi
\paper Quantum generalized cluster algebras and quantum dilogarithms of higher degrees
\jour TMF
\yr 2015
\vol 185
\issue 3
\pages 460--470
\mathnet{http://mi.mathnet.ru/tmf8897}
\crossref{https://doi.org/10.4213/tmf8897}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438630}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...185.1759N}
\elib{https://elibrary.ru/item.asp?id=24850765}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 185
\issue 3
\pages 1759--1768
\crossref{https://doi.org/10.1007/s11232-015-0377-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368194800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953287287}
Linking options:
  • https://www.mathnet.ru/eng/tmf8897
  • https://doi.org/10.4213/tmf8897
  • https://www.mathnet.ru/eng/tmf/v185/i3/p460
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025