Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 185, Number 3, Pages 527–544
DOI: https://doi.org/10.4213/tmf8894
(Mi tmf8894)
 

This article is cited in 8 scientific papers (total in 8 papers)

Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras

O. K. Sheinman

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (588 kB) Citations (8)
References:
Abstract: Based on $\mathbb Z$-gradings of semisimple Lie algebras and invariant polynomials on them, we construct hierarchies of Lax equations with a spectral parameter on a Riemann surface and prove the commutativity of the corresponding flows.
Keywords: Lax operator algebra, Lax equation, hierarchy, semisimple Lie algebra, Riemann surface.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant 14-50-00005.
Received: 19.02.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 185, Issue 3, Pages 1816–1831
DOI: https://doi.org/10.1007/s11232-015-0381-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, TMF, 185:3 (2015), 527–544; Theoret. and Math. Phys., 185:3 (2015), 1816–1831
Citation in format AMSBIB
\Bibitem{She15}
\by O.~K.~Sheinman
\paper Hierarchies of finite-dimensional Lax equations with a~spectral parameter on a~Riemann surface and semisimple Lie algebras
\jour TMF
\yr 2015
\vol 185
\issue 3
\pages 527--544
\mathnet{http://mi.mathnet.ru/tmf8894}
\crossref{https://doi.org/10.4213/tmf8894}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438634}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...185.1816S}
\elib{https://elibrary.ru/item.asp?id=24850780}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 185
\issue 3
\pages 1816--1831
\crossref{https://doi.org/10.1007/s11232-015-0381-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368194800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953335946}
Linking options:
  • https://www.mathnet.ru/eng/tmf8894
  • https://doi.org/10.4213/tmf8894
  • https://www.mathnet.ru/eng/tmf/v185/i3/p527
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025