Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 185, Number 3, Pages 527–544
DOI: https://doi.org/10.4213/tmf8894
(Mi tmf8894)
 

This article is cited in 8 scientific papers (total in 8 papers)

Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras

O. K. Sheinman

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (588 kB) Citations (8)
References:
Abstract: Based on Z-gradings of semisimple Lie algebras and invariant polynomials on them, we construct hierarchies of Lax equations with a spectral parameter on a Riemann surface and prove the commutativity of the corresponding flows.
Keywords: Lax operator algebra, Lax equation, hierarchy, semisimple Lie algebra, Riemann surface.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant 14-50-00005.
Received: 19.02.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 185, Issue 3, Pages 1816–1831
DOI: https://doi.org/10.1007/s11232-015-0381-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, TMF, 185:3 (2015), 527–544; Theoret. and Math. Phys., 185:3 (2015), 1816–1831
Citation in format AMSBIB
\Bibitem{She15}
\by O.~K.~Sheinman
\paper Hierarchies of finite-dimensional Lax equations with a~spectral parameter on a~Riemann surface and semisimple Lie algebras
\jour TMF
\yr 2015
\vol 185
\issue 3
\pages 527--544
\mathnet{http://mi.mathnet.ru/tmf8894}
\crossref{https://doi.org/10.4213/tmf8894}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438634}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...185.1816S}
\elib{https://elibrary.ru/item.asp?id=24850780}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 185
\issue 3
\pages 1816--1831
\crossref{https://doi.org/10.1007/s11232-015-0381-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368194800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953335946}
Linking options:
  • https://www.mathnet.ru/eng/tmf8894
  • https://doi.org/10.4213/tmf8894
  • https://www.mathnet.ru/eng/tmf/v185/i3/p527
  • This publication is cited in the following 8 articles:
    1. P. I. Borisova, O. K. Sheinman, “Hitchin Systems on Hyperelliptic Curves”, Proc. Steklov Inst. Math., 311 (2020), 22–35  mathnet  crossref  crossref  mathscinet  isi  elib
    2. O. K. Sheinman, “Spectral Curves of the Hyperelliptic Hitchin Systems”, Funct. Anal. Appl., 53:4 (2019), 291–303  mathnet  crossref  crossref  mathscinet  isi  elib
    3. O. K. Sheinman, “Certain reductions of Hitchin systems of rank 2 and genera 2 and 3”, Dokl. Math., 97:2 (2018), 144–146  mathnet  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    4. Elena Yu. Bunkova, “Hirzebruch functional equation: classification of solutions”, Proc. Steklov Inst. Math., 302 (2018), 33–47  mathnet  crossref  crossref  mathscinet  isi  elib
    5. O. K. Sheinman, “Matrix divisors on Riemann surfaces and Lax operator algebras”, Trans. Moscow Math. Soc., 78 (2017), 109–121  mathnet  crossref  mathscinet  elib
    6. O. K. Sheinman, “Lax operator algebras and integrable systems”, Russian Math. Surveys, 71:1 (2016), 109–156  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    8. Oleg K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846  mathnet  crossref  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:513
    Full-text PDF :151
    References:53
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025