|
This article is cited in 8 scientific papers (total in 8 papers)
Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras
O. K. Sheinman Steklov Mathematical Institute of Russian Academy of
Sciences, Moscow, Russia
Abstract:
Based on $\mathbb Z$-gradings of semisimple Lie algebras and invariant polynomials on them, we construct hierarchies of Lax equations with a spectral parameter on a Riemann surface and prove the commutativity of the corresponding flows.
Keywords:
Lax operator algebra, Lax equation, hierarchy, semisimple Lie algebra, Riemann surface.
Received: 19.02.2015
Citation:
O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, TMF, 185:3 (2015), 527–544; Theoret. and Math. Phys., 185:3 (2015), 1816–1831
Linking options:
https://www.mathnet.ru/eng/tmf8894https://doi.org/10.4213/tmf8894 https://www.mathnet.ru/eng/tmf/v185/i3/p527
|
|