Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1998, Volume 116, Number 1, Pages 54–100
DOI: https://doi.org/10.4213/tmf889
(Mi tmf889)
 

This article is cited in 22 scientific papers (total in 22 papers)

Hirota equation and Bethe ansatz

A. V. Zabrodinab

a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
Abstract: Recent analyses of classical integrable structures in quantum integrable models solved by various versions of the Bethe ansatz are reviewed. Similarities between elements of quantum and classical theories of integrable systems are discussed. Some key ideas in quantum theory, now standard in the quantum inverse scattering method, are identified with typical constructions in classical soliton theory. Functional relations for quantum transfer matrices become the classical Hirota bilinear difference equation; solving this classical equation gives all the basic results for the spectral properties of quantum systems. Vice versa, typical Bethe ansatz formulas under certain boundary conditions yield solutions of this classical equation. The Baxter T-Q relation and its generalizations arise as auxiliary linear problems for the Hirota equation.
Received: 28.01.1998
English version:
Theoretical and Mathematical Physics, 1998, Volume 116, Issue 1, Pages 782–819
DOI: https://doi.org/10.1007/BF02557123
Bibliographic databases:
Language: Russian
Citation: A. V. Zabrodin, “Hirota equation and Bethe ansatz”, TMF, 116:1 (1998), 54–100; Theoret. and Math. Phys., 116:1 (1998), 782–819
Citation in format AMSBIB
\Bibitem{Zab98}
\by A.~V.~Zabrodin
\paper Hirota equation and Bethe ansatz
\jour TMF
\yr 1998
\vol 116
\issue 1
\pages 54--100
\mathnet{http://mi.mathnet.ru/tmf889}
\crossref{https://doi.org/10.4213/tmf889}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1700691}
\zmath{https://zbmath.org/?q=an:0988.82017}
\elib{https://elibrary.ru/item.asp?id=13303149}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 116
\issue 1
\pages 782--819
\crossref{https://doi.org/10.1007/BF02557123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076425700002}
Linking options:
  • https://www.mathnet.ru/eng/tmf889
  • https://doi.org/10.4213/tmf889
  • https://www.mathnet.ru/eng/tmf/v116/i1/p54
  • This publication is cited in the following 22 articles:
    1. Ilievski E., De Nardis J., Gopalakrishnan S., Vasseur R., Ware B., “Superuniversality of Superdiffusion”, Phys. Rev. X, 11:3 (2021), 031023  crossref  isi
    2. Gerdjikov V.S. Smirnov A.O. Matveev V.B., “From Generalized Fourier Transforms to Spectral Curves For the Manakov Hierarchy. i. Generalized Fourier Transforms”, Eur. Phys. J. Plus, 135:8 (2020), 659  crossref  isi
    3. Maillet J.M. Niccoli G. Vignoli L., “Separation of Variables Bases For Integrable Gl(M Vertical Bar N) and Hubbard Models”, SciPost Phys., 9:4 (2020), 060  crossref  isi
    4. Ilievski E. Quinn E., “The Equilibrium Landscape of the Heisenberg Spin Chain”, SciPost Phys., 7:3 (2019), 033  crossref  isi
    5. Fioravanti D. Nepomechie R.L., “An inhomogeneous Lax representation for the Hirota equation”, J. Phys. A-Math. Theor., 50:5 (2017), 054001  crossref  mathscinet  zmath  isi  scopus
    6. Kazakov V. Leurent S., “Finite Size Spectrum of Su(N) Principal Chiral Field From Discrete Hirota Dynamics”, Nucl. Phys. B, 902 (2016), 354–386  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    7. Zengo Tsuboi, Anton Zabrodin, Andrei Zotov, “Supersymmetric quantum spin chains and classical integrable systems”, JHEP, 2015, no. 5, 86–43  mathnet  crossref  isi  scopus
    8. A. Zabrodin, Springer Proceedings in Physics, 163, Nonlinear Mathematical Physics and Natural Hazards, 2015, 29  crossref
    9. A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423  mathnet  crossref  isi  scopus
    10. Anton Zabrodin, “The Master $T$-Operator for Inhomogeneous $XXX$ Spin Chain and mKP Hierarchy”, SIGMA, 10 (2014), 006, 18 pp.  mathnet  crossref  mathscinet
    11. Alexandrov A. Leurent S. Tsuboi Z. Zabrodin A., “The Master T-Operator For the Gaudin Model and the KP Hierarchy”, Nucl. Phys. B, 883 (2014), 173–223  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    12. Zabrodin A., “Quantum Gaudin Model and Classical KP Hierarchy”, Physics and Mathematics of Nonlinear Phenomena 2013, Journal of Physics Conference Series, 482, IOP Publishing Ltd, 2014, 012047  crossref  isi  scopus  scopus  scopus
    13. A. V. Zabrodin, “The master $T$-operator for vertex models with trigonometric $R$-matrices as a classical $\tau$-function”, Theoret. and Math. Phys., 174:1 (2013), 52–67  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. Alexandrov A. Kazakov V. Leurent S. Tsuboi Z. Zabrodin A., “Classical Tau-Function for Quantum Spin Chains”, J. High Energy Phys., 2013, no. 9, 064  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    15. Hegedus, A, “Discrete Hirota dynamics for AdS/CFT”, Nuclear Physics B, 825:3 (2010), 341  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    16. Gromov, N, “Finite volume spectrum of 2D field theories from Hirota dynamics”, Journal of High Energy Physics, 2009, no. 12, 060  crossref  mathscinet  isi  scopus  scopus  scopus
    17. A. V. Zabrodin, “Bäcklund transformations for the difference Hirota equation and the supersymmetric Bethe ansatz”, Theoret. and Math. Phys., 155:1 (2008), 567–584  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. Kazakov, V, “Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics”, Nuclear Physics B, 790:3 (2008), 345  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    19. Habibullin I., “Characteristic Algebras of Discrete Equations”, Difference Equations, Special Functions and Orthogonal Polynomials, 2007, 249–257  crossref  mathscinet  zmath  isi
    20. I. T. Habibullin, “C-Series Discrete Chains”, Theoret. and Math. Phys., 146:2 (2006), 170–182  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:962
    Full-text PDF :457
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025